Radiological Technology

Radiological technology is the production of medical images commonly called X-rays, of internal organs and structures. They are produced by passing a small, highly controlled amount of radiation through the human body, and capturing the resulting image on an image recording device. When X-rays penetrate the body, they are absorbed in varying amounts by different parts of the anatomy. Bones, for example, will absorb much of the radiation and, therefore, appear white or light gray on the image, whereas soft tissue absorbs little radiation and appears dark.

Contrast media are sometimes used to enhance certain organs and structures that otherwise are not visualized on medical X-ray images.

The field of radiological technology also includes therapeutic procedures, often referred to as interventional radiology. Interventional Radiology is used in the detection, diagnosis and treatment of injury and disease.

Some Examples of Radiography:

  • General Radiology is used to detect bone fractures and pathological processes, locate foreign objects in the body, and demonstrate the relationship between bone and soft tissue.

  • Fluoroscopy produces real-time X-ray images. Fluoroscopy is used in conjunction with contrast media to enable visualization of internal structures such as the gastrointestinal tract, blood vessels and various organs during diagnostic and therapeutic procedures. Fluoroscopy is also performed in the operating room during surgery providing the surgeon visual guidance for various surgical procedures.

  • Computerized Tomography produces cross-sectional and 3-dimensional images of various structures in the body

  • Angiography uses contrast agents to examine the heart and blood vessels

  • Mammography produces radiographic images of the breast to detect cancer in its earliest stages

  • Electronic image management (PACS)

What does a Radiological Technologist do?

  • Play an integral role in the detection of injury and disease; they are the medical personnel who perform diagnostic imaging examinations, including mammography and computerized tomography.
  • They are responsible for accurately positioning patients and ensuring that a quality diagnostic image is produced.
  • Work closely with patients, doctors and other health professionals as part of the interdisciplinary health care team.
  • Use cutting-edge medical imaging technology and advanced computer systems to perform complex anatomical scans, many in real-time, to produce and enhance radiographic images.

Why become a Radiological Technologist?

Radiological technology offers many areas of specialization

  • Mammography (breast imaging)
  • Computed tomography (CT)
  • Diagnostic visceral and peripheral angiography with interventional radiology
  • Electronic image management (PACS)
  • Neuroradiology or trauma radiography

Radiological Technologists are vital members of the interprofessional health care team devoted to patient care. Technologists must have the technical expertise to operate sophisticated instruments, but must also have the humanistic skills necessary to communicate with patients, problem-solve, and work well with other members of the health care team.

Graduates in Radiological Technology  earn a BSc in Medical Radiation Sciences from the University of Toronto and an Advanced Diploma in Radiological Technology from The Michener Institute and may pursue advanced studies at U of T or Michener, including:

  • Magnetic Resonance Imaging (MRI)
  • PACS Administrator / Imaging Informatics
  • Master of Applied Science (Institute of Medical Sciences)
  • Master of Health Administration

 

Courses

1ST YEAR

ADRD250/MRS175H1 - Health Care Systems

Health Care Systems will build on the existing and developing knowledge of the learner to enhance their understanding of the organization and operations of the health system in Canada. It will discuss the historical conceptualizations of the provider/client relationship, which often characterize clients as the objects of care and examine, and explore the more recent concept of an integrated client-centred continuum in which individuals participate in defining and addressing their needs in the most appropriate setting.

ANRD111/MRS161H1 - Anatomy

This course is an introductory online course designed to serve as the foundation in Human Anatomy for students in the Medical Radiation Sciences program. The course will introduce learners to the components of the human body, relationships of the surface anatomy and the body's internal components and discuss the basic function of these components. The course will encompass a regional approach to study the human body with correlation to its clinical application. Anatomy for MRS will also serve to prepare learners for ANRD121/ MRS164H1 (Relational Anatomy).

ANRD121/MRS164H1 - Relational Anatomy

This Relational Anatomy course requires learners to apply their knowledge of gross anatomy to explore the cross-sectional and relational anatomy of the head, central nervous system, neck, spine, thorax, abdomen, pelvis (male/female) and the upper and lower extremities. An emphasis is placed on the learner’s ability to identify and justify the relative positions of the organs, the vascular system, the lymphatic system as well as muscular and skeletal structures in each of the aforementioned anatomic regions.  

IGRD110/MRS281H - Comparative Medical Imaging 

Learners will develop an understanding of what it means to be a medical radiation technologist and the role they play as a healthcare professional in diagnostic and therapeutic imaging. The learners will be exposed through a series of seminars delivered by healthcare professionals from the practice setting, to a variety of imaging modalities used in the diagnosis and treatment of patients.  Additional topics relating to the imaging modalities that will be covered are image fusion, and informatics.

PCRD110/MRS262H1 - Introduction to Patient Care in MRS

Learners are provided with the opportunity to learn about and practice the common technical and non-technical skills necessary for caring for patients in the clinical environment. The covered topics will provide fundamental knowledge and skills in patient care and professional development.

PCRD120/MRS264H1 - Special Topics in Patient Care I: Contrast Media/Injection

This course examines the use of contrast media agents for the purpose of diagnostic and interventional medical imaging. Learners will examine the rationale for the use of different types of contrast media agents available, the complications and adverse reactions that can result from the use of contrast agents, and the legal implications of contrast media administration. Learners will also gain practical skills in performing intravenous injections using both angiocatheters and butterfly needles. 

PSRD120/MRS162H1 - Physiology

This course will introduce students to the function of the organ systems that comprise the human body. The course will follow a systematic structure covering all of the principal functional systems within the body, examples include the cardiovascular and respiratory systems. Learners are expected to be familiar with the anatomical structure of these systems. 

INRA110/MRS114H1 - Diagnostic Imaging Instrumentation I

The purpose of this course is to introduce learners to the principles of medical image recording and equipment. In this course, learners will gain introductory knowledge on how radiological images are produced, manipulated, and critiqued in terms of diagnostic quality. Learners will examine how information flows from the patient to the observer in four distinct stages.

ANRA310/MRS102H1 - Human Osteology

A comprehensive study of human osteology with the emphasis on practical application to radiographs of the normal axial and appendicular skeleton.

PHRA110/MRS115H1 - Radiographic Physics and Radiobiology

The Radiographic Physics portion of this course describes the properties and components of the electromagnetic spectrum. Medical X-ray production and equipment will be discussed, along with the factors that determine both the quality and quantity of the X-ray beam. The Radiobiology portion of this course will be delivered on line and jointly with the students of the Nuclear Medicine and Molecular Imaging Technology program.  This course examines the biological response to radiation in depth, ranging from the cellular level to whole body response

RARA311/MRS117H1 - Radiographic Methodology I

Radiographic Methodology I focus on aiding learners to achieve the skills necessary to safely and correctly complete radiographic studies of the appendicular skeleton, chest and abdomen. The fundamental principles of radiographic image production, the ability to analyze radiographic images for correct positioning and technical factor selection, and the parameters that define optimal diagnostic quality of a radiographic image will be introduced in this course.

INRA120/MRS116H1 - Diagnostic Imaging Instrumentation II

This course is a continuation of the concepts and practice learned in Diagnostic Instrumentation I. Building upon previous knowledge, the learner will continue to gain insight into the principles of medical image recording, and will further explore the modalities of CR and DR, in greater depth. The link between Digital Imaging and Picture Archiving and Communication System (PACS) will be emphasized, and the relationship between Hospital Information System (HIS), Radiology Information System (RIS) and PACS will be explored.

CLRA130/MRS118H1 - Introduction to Clinical Radiography

In this course the learner will gain an understanding of the role and responsibility of the MRT in the clinical environment. While in the clinical setting, the learner will have an opportunity to practice general radiography in their assigned clinical site. The learner will gain an understanding of the patient experience by applying the patient care, communication, and methodology skills learned in the didactic environment to the practice of Radiological Technology. They will familiarize themselves with the mechanical functioning of the imaging equipment and experience the team dynamics of health care provision

Selective I

 

2nd YEAR

RMIP240/MRS266H1 - Introduction to Research Methods

CTRD240/MRS265H1 - Integrated C.T. Imaging Theory and Practice I

HBRD241/MRS269H1 - Clinical Behavioural Science 

CTRD250/MRS206H1 - Integrated C.T. Imaging and Theory Practice II

SLRD110/MRS198H1 - Quality In Healthcare

RARA240/MRS120H1 – Radiographic Methodology II

INRA251/MRS205H1 – Diagnostic Imaging and Instrumentation III

PRRD240/MRS267H1 – Principles of Pharmacology for Radiation Sciences

PCRA251/MRS212H1 – Patient Care for Medical Imaging

PGRA240/MRS119H1 – Medical Imaging Pathology

RARA250/MRS207H1 – Radiographic Methodology III

IPCL2501/MRS271H1 - Interprofessional Collaboration Clinical Simulation

CLRA261/MRS209H1 – Simulated Clinical Practice: Radiological Technology

TCRA266/MRS231H1 – Transition to Clinical Radiography

Selective II

 

3rd YEAR

CLRA371/MRS210H1 – Clinical Radiography II

RMRD370/MRS278Y1 - Research Methods II

OR

CPRD370/MRS273H1 - Clinical Project

CLRA380/MRS211H1 – Clinical Radiography III

Selective III

Contact the MRS Program:

T: 416.978.7837

E: mrs.admissions@utoronto.ca

> Application Requirements, Deadlines, and Procedures

> Student Life at U of T

> back to the Medical Radiation Sciences homepage

Back to Top