LQ-Model Workshop

Tim Craig, PhD, MCCPM

Director, Medical Physics Walker Family Cancer Centre, Niagara Health

April 8, 2025

Disclosures

 Licensing agreement with Modus Medical Devices

Learning Objectives

 To be able to compute EQD2 to compare radiation fractionation schemes

Linear-Quadratic Equation

$$E = n(\alpha d + \beta d^2)$$

EQD2

• EQuivalent Dose in 2 Gy fractions

EQD2 Calculation

$$BED = D\left(1 + \frac{d}{\alpha/\beta}\right)$$

$$BED = EQD2\left(1 + \frac{2}{\alpha/\beta}\right)$$

$$EQD2 = \frac{BED}{\left(1 + \frac{2}{\alpha/\beta}\right)}$$

EQD2 Calculation

$$EQD2 = \frac{D\left(1 + \frac{d}{\alpha/\beta}\right)}{1 + \frac{2}{\alpha/\beta}}$$

$$EQD2 = \frac{D\left(\alpha/\beta + d\right)}{\alpha/\beta + 2}$$

$$EQD2 = D\left(\frac{d + \alpha/\beta}{2 + \alpha/\beta}\right)$$

EQD2 and **BED**

$$EQD2 = D\left(\frac{d + \alpha/\beta}{2 + \alpha/\beta}\right)$$

$$BED = EQD0 = D\left(\frac{d + \alpha/\beta}{0 + \alpha/\beta}\right)$$

$$BED = D\left(1 + \frac{d}{\alpha/\beta}\right)$$

Therefore, BED can be considered equivalent to dose given in fractions approaching the limit of 0 Gy per fraction

- Palliative treatment for spine
- 20 Gy in 5 fractions
- Assume spinal cord α/β = 2 Gy

$$EQD2 = D\left(\frac{d + \alpha/\beta}{2 + \alpha/\beta}\right)$$

$$EQD2 = 20\left(\frac{4+2}{2+2}\right)$$

$$EQD2 = 30 Gy$$

Is that safe?

RECOMMENDED DOSE-VOLUME LIMITS

With conventional fractionation of 2 Gy per day including the full cord cross-section, a total dose of 50 Gy, 60 Gy, and \sim 69 Gy are associated with a 0.2, 6, and 50% rate of myelopathy. For reirradiation of the full cord cross-section at 2 Gy

• Can we escalate the dose?

Fractionation	EQD2 (Gy)	QUANTEC Myelopathy Risk
25 Gy, 5 fractions		
30 Gy, 5 fractions		
35 Gy, 5 fractions		

- PROFIT
- Can we shorten prostate treatments from 39 fractions to 20 fractions?

- Assume prostate cancer α/β is 1.5 Gy
- Compare 78 Gy in 39 fractions to 60 Gy in 20 fractions
- EQD2 is 78 Gy for 2 Gy/fraction arm (by definition)

$$EQD2 = D\left(\frac{d + \alpha/\beta}{2 + \alpha/\beta}\right)$$
 $EQD2 = 60\left(\frac{3 + 1.5}{2 + 1.5}\right)$ $EQD2 = 77.1 Gy$

- Let's do for normal tissue too
- Assume rectum α/β is 3.0 Gy, no time factor
- EQD2 is 78 Gy for 2 Gy/fraction arm (by definition)

$$EQD2 = D\left(\frac{d + \alpha/\beta}{2 + \alpha/\beta}\right)$$
 $EQD2 = 60\left(\frac{3 + 3.0}{2 + 3.0}\right)$ $EQD2 = 72.0 Gy$

Summary

 EQD2 is easy to compute and allows comparisons of different fractionation schemes with familiar values

Questions?

Thank you!

Tim Craig tim.craig@niagarahealth.on.ca

