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Learning Objectives

Define particle therapy

Unc
Unc

cha

erstand physical benefits of particle therapy

erstand radiobiological benefits (and
lenges) of particle therapy

Describe and give examples of clinical uses of
particle therapy
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Particle Therapy (Hadron Therapy)

. Hadron
o  Any type of subatomic particle made up of quarks and subject to the
strong force (two types of hadrons: baryons and mesons)
® Protons and neutrons are hadrons

o  Hadron or particle therapy refers to radiotherapy using: protons, light-
lons or heavy-ions (and fast neutrons)

. Light vs Heavy-ions

o  Atomic number is the number of protons in the nucleus of an atom
o  Atomic mass is the number of protons + neutrons

0 Light ions: z < 6, heavy ions: z >=6
@ Helium is a light ions
o Carbon is a heavy ion
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Particle Therapy

* Both physical and radiobiological benefits to
particle therapy (protons, carbon-ions) compared
with conventional (photon) treatment

o Physical: less dose deposition proximal and distal to
the tumor, less scattering
= Bragg Peak

o Biological: Higher LET and RBE

= |mpact on both tumor and normal tissues
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LET RBE

Megavoltage
X rays

Quality of dose distribution ———»
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Physical
basis for particle therapy
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X rays
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Physical Benefits of Particle Therapy

 Bragg Peak

* Increasing particle mass -> less influence
of scattering and straggling

* |ncreasing particle mass -> nuclear
fragmentations which contributes to dose
beyond the Bragg Peak
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Figure 1. Physical properties of carbon ions in comparison to X-rays, protons, and helium ions.
(A). Depth-dose distributions showing the Bragg peak for all ions at the same range, and the reduced
straggling of heavier ions. (B). Lateral scattering is reduced by increasing the ion mass. cancers
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Kraft, History of Heavy ion therapy at GSI
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Spread-out Bragg Peak

https://www.oncolink.org/healthcare-professionals/oncolink-university/proton-therapy-professional-education/oncolink-proton-
education-modules/the-physics-of-proton-therapy
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Brief History of Hadron Therapy
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Degiovanni A, Amaldi U. History of hadron therapy accelerators. Phys Med. 2015 Jun;31(4):322-32.

doi: 10.1016/j.ejmp.2015.03.002. Epub 2015 Mar 23. PMID: 25812487
Wilson R.R. Radiological use of fast protons. Radiology. 1946;47(5):487-491. doi: 10.1148/47.5.487.
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Biological
basis for high-LET therapy
(e.g. carbon ions, neutrons)
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Biological Benefits of High LET Radiotherapy

* Decreased influence of oxygen
* Decreased influence of cell cycle position

 Decreased range of radiation response of
different cell types
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Reduced effect of oxygen
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Variation of RBE and OER with LET
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Reduced Range of Radiation Response

 Range of radiation response of different cell types is
reduced with high-LET radiation (neutrons) compared

with X-rays
o In-vitro response of 20 human cell lines to photon and neutron
irradiation
o Same median cell survival for 2 Gy (photons) and 0.68 Gy
(neutrons)

o Average RBE=2 Gy /0.68 Gy =2.94
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Figure 6.9 Response of 20 human tumour cell lines to (a) 4 MVp photons, or (b) p(62.5)-Be neutrons. The vertical lines show the photon

(2 Gy) and neutron (0.68 Gy) doses that give the same median cell survival; the average RBE is therefore 2/0.68 = 2.94. (c) The range of cell
survival at the reference neutron dose of 0.68 Gy (SF, ) is less than the range of cell survival at a photon dose of 2 Gy (SF;). In 9/20 of the

cell lines neutrons gave lower cell survival than photons at these doses (d).
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Benefit of High LET Radiation

« Benefit of high LET NN
. . . . . k £ b | g
radiation in clinical e e
setting may therefore
depend on the relative 1IN .._
radiosensitivity of the A\ g
tumour and surrounding

. Figure 25.3 The differential biological effect. For tumours (T)

n O rm aI tl SS u e more radioresistant to photons than normal tissue (NT) (a), the use
of carbon ions could be beneficial by decreasing the unfavourable
difference in radiosensitivity between tumour and normal tissue (b).
For tumours more radiosensitive to photons than normal tissue (c), the
use of carbon ions could be detrimental by decreasing the favourable

& Princess difference in radiosensitivity between normal tissue and tumour (d).
% Radiation Oncology Tem¢rFY Margal‘ct
&p UNIVERSITY OF TORONTO Medicine Cancer Centre Clinical and Experimental Radiobiology Course 2025



v

Relative dose

Normal tissue

Energy
LET
Dose
RBE
OER

Cell-cycle
dependence

Fractionation
dependence

Angiogenesis

Immune effects

. cancers

Review

Carbon Ion Radiobiology
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C-ions

Low LET radiation
(X-rays)

High tumor dose, normal tissue sparing

Potential advantages

Effective for radioresistant tumors

Effective against hypoxic tumors

Radioresistant (S) phase cells are sensitized
Fractionation spares normal tissue more than
tumour

Reduced angiogenesis and metastatization

Systemic effects in combination with
immunotherapy

Figure 2. Summary of the physical and radiobiological properties of heavy ions along the Bragg curve.
The figures on top right show a sketch of the quality of DNA damage and the corresponding yYH2AX
foci distribution with carbon ions and X-rays. Adapted from [12].
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Biological bases for high-LET particle
therapy
(e.g. carbon ions, neutrons)

- Reduced range of response

* Reduced influence of oxygen

» Reduced influence of cell cycle
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CLINICAL APPLICATIONS OF
PARTICLE THERAPY

& Princess
Rﬂdl‘d[lDl‘l OHCDIGgy Tem¢r!:y Margaret
¥» UNIVERSITY OF TORONTO Medicine Cancer Centre Clinical and Experimental Radiobiology Course 2025



#

Radiation Oncology
UNIVERSITY OF TORONTO

Current Clinical Use of Particle Therapy
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Current Clinical use of Particle Therapy

Patients treated with Protons and C-lons worldwide 2007-2023

400000

Summary, 1954-2023 PATIENTS |DATES OF

PARTICLES TOTAL TOTAL

Total of all facilities (in and out of operation): He 2054 1957-1992

Pions 1100 1974-1994

C-ions 57515 |1994-2023

300000 *= estimated or not yet confirmed Other ions 433 1975-1992 I n Can ada 20 17 .
= protons as boost Protons 353911 |1954-2023 ( )

n.a.= no data available Grand Total | 415013 |1954-2023 >100,000 courses Of
250000 Martin Jermann, Secretary of PTCOG, update Feb 2025 (Copyright @ PTCOG) radiation therapy

200000

In Canada (2020):
48 radiation treatment
facilities in Canada.

150000

100000

Data from CPQR

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
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Why don't we treat all patients using Particle therapy

= Clinical evidence for proton and carbon-ion
therapy is still developing

= Proton and carbon ion therapy is significantly
more expensive

= Requires large, highly specialized equipment
* There is limited availability
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Han MC et al. The first Korean
carbon-ion radiation therapy
facility: current status of the
Heavy-ion Therapy Center at the
Yonsei Cancer Center. Radiat
Oncol J. 2024 Dec;42(4):295-307.
doi: 10.3857/r0j.2024.00206.
Epub 2024 Dec 20. PMID:
39748530; PMCID:
PMC11701461.

« 9minlength
» Rotational radius 6.3 m
« Weight: 200 tons

Yonsel Carbon ion faC|I|ty In Korea
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PROTON THERAPY
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GENERAL

Benign or malignant tumors or hematologic malignancies in children aged 21 years and younger treated with curative intent and
occasionally palliative intent treatment of childhood tumors when at least one of the three criteria noted above under “indications
for coverage” apply

Benign or malignant tumors or hematologicr wcies in the adolescent/young adult (AYA) population aged 22 years to 39
years treated with curative intent when at least one of the three criteria noted above under “indications for coverage” apply

Patients with genetic syndromes making total volume of radiation minimization crucial, such as but not limited to NF-1 patients,
deleterious ATM mutations, Li-Fraumeni, retinoblastoma patients, and patients with known or suspected genetic mutations. In
addition, patients with other genetic mutations who are at increased risk of developing second cancers at or near the same body
location such as but not limited to BRCA 1/2, Lynch syndrome, etc.

Medically inoperable patients with a diagnosis of cancer typically treated with surgery where dose escalation is required due to
the inability to receive surgery

Re-irradiation cases (where cumulative critical structure dose would exceed tolerance dose)

Primary malignant or benign bone tumors

CENTRAL NERVOUS SYSTEM

Ocular tumors, including intraocular melanomas

Tumors that approach or are located at the base of skull, including but not limited to:
Chordoma
Chondrosarcomas
Other histologies arising in this site

Malignant and benign primary CNS tumors excluding IDH wild-type GBM, that are treated with curative intent and with potential
for long term prognosis

Primary spine or spinal cord tumors or metastatic tumors to the spine or spinal cord where organ at risk tolerance may be
exceeded with photon treatments

Primary and metastatic tumors requiring craniospinal irradiation

HEAD AND NECK

Cancers of the nasopharynx, nasal cavity, paranasal sinuses and other accessory sinuses

Advanced stage and unresectable head and neck cancers

THORACIC

Primary cancers of the esophagus
Primary tumors of the mediastinum, including thymic tumors, mediastinal tumors, mediastinal lymphomas and thoracic sarcomas

hali

1t pleural r

ABDOMINAL

Hepatocellular cancer and intra-hepatic biliary cancers

Non-metastatic retroperitoneal sarcomas

PELVIC

Advanced and unresectable pelvic tumors with significant pelvic and/or peri-aortic nodal disease

Patient with a single kidney or transplanted pelvic kidney with treatment of an adjacent target volume and in whom maximal
avoidance of the organ is critical

ASTRO
(American)
Guidelines

INDICATIONS AND LIMITATIONS OF COVERAGE AND/OR MEDICAL NECESSITY

Indications for Coverage
PBT is considered reasonable in instances where sparing the surrounding normal tissue is of added clinical benefit to the patient

and cannot be adequately achieved with photon-based radiation therapy. Examples of such an advantage include, but are not
limited to:

1. 'The target volume is near one or more critical structures and a steep dose gradient outside the target must be achieved to
avoid exceeding the tolerance dose to the critical structure(s), which would portend a higher risk of toxicity.

2. A proton-based technique would decrease the probability of clinically meaningful normal tissue toxicity by lowering an
integral dose-based metric and/or organ at risk dose volume constraint associated with toxicity.

3. The same or an immediately adjacent area has been previously irradiated, and the dose distribution within the patient must
be sculpted to avoid exceeding the cumulative tolerance dose of nearby normal tissue.

https://www.astro.org/ASTRO/media/ASTRO/Daily%20Practice/
PDFs/ASTROPBTModelPolicy.pdf
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Patient Selection for Proton Therapy

Patient meets general eligibility

criteria for proton therapy:

e Primary tumor originating in
the pharynx, larynx or oral
cavity

*  Nodistant metastases

*  Curative intent

Generate PHOTON plan
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PROTON THERAPY
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Figure. Flowchart for selecting
patients for a plan comparison
and PT, respectively. For each
toxicity endpoint, the maximum
ANTCP (ANTCPp,.x) has to be
calculated first by the following
equation: ANTCP,,,x = [NTCP
— PHOTONS] — [NTCP, —
PROTONS], in which,
NTCPmin — PROTONS is the
NTCP value, assuming that
with protons, the dose to all
DVH parameters in the model
can be reduced to zero.
Abbreviations: DVH, dose-
volume histogram; NTCP,
Normal Tissue Complication
Probability; PT, proton therapy.
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Langendijk JA, Hoebers FJP, de
Jong MA, Doornaert P, Terhaard
CHJ, Steenbakkers RJHM,
Hamming-Vrieze O, van de Kamer
JB, Verbakel WFAR, Keskin-
Cambay F, Reitsma JB, van der
Schaaf A, Boersma LJ, Schuit E.
National Protocol for Model-
Based Selection for Proton
Therapy in Head and Neck
Cancer. Int J Part Ther. 2021 Jun
25;8(1):354-365. doi:
10.14338/1JPT-20-00089.1. PMID:
34285961; PMCID: PMC8270079.
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https://www.ebme.co.uk/articles/clinical-engineering/proton-beam-therapy
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IMPT IMRT

Axial

Gogineni E et a Comparative
In Silico Analysis of Ultra-
Hypofractionated Intensity-
Modulated Photon
Radiotherapy (IMRT) Versus
Intensity-Modulated Proton
Therapy (IMPT) in the Pre-
Operative Treatment of
Retroperitoneal Sarcoma.
Cancers (Basel). 2023 Jul
4;15(13):3482. doi:
10.3390/cancers15133482.
PMID: 37444592; PMCID:
PMC10341304
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Eaton BR et al.
Secondary
Malignancy Risk
Following Proton
Radiation
Therapy. Front
Oncol. 2015 Nov
26;5:261. doi:
10.3389/fonc.201
5.00261. PMID:
26636040;
PMCID:
PMC4659915.
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Clinical Benefits of Proton Therapy

« Reduction in normal tissue volume/doses
 Reduction In associated side-effects

» Cost-effectiveness with respect to long-
term management of toxicity
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Clinical Proton Treatment Planning:
RBE =1.1

25
in vivo studies
20 ]
Paganetti H, Niemierko A,
w | Ancukiewicz M, Gerweck LE,
@m 15 e Goitein M, Loeffler JS, Suit HD.
£ ; T ¥ Relative biological
z &‘g effectiveness (RBE) values for
1.0 4 % P proton beam therapy. Int J
a A Radiat Oncol Biol Phys. 2002
Jun 1;53(2):407-21. doi:
- 10.1016/s0360-
' : ' 0 ' 3016(02)02754-2. PMID:
Dose [Gy] 12023146.

Fig. 2. Experimental proton RBE values (relative to ®*Co) as a function of dose/fraction measured in vivo in the center
of a SOBP. Closed symbols show RBE values for jejunal crypt cells, open symbols stand for RBEs for all other tissues.
Circles represent RBEs for < 100-MeV beams and triangles for >100-MeV beams.

Princess
Rﬂdl‘d[lol‘l OHCDngy Tem¢r!:y Mar aret
 UNIVERSITY OF TORONTO Medicine Cancer Centre Clinical and Experimental Radiobiology Course 2025

Bkt



400 T T -
! ! ! ’ . cancers

Review
B Carbon Ion Radiobiology
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Figure 3. LET versus depth in tissue for a single SOBP of p, He, C, and O providing a uniform physical
dose (2 Gy). The grey area represents the tumor region, a 2.5 X 2.5 x 2.5 cm? volume centered at 8 cm
in water. The yellow and orange lines are 100 and 20 keV/um level, respectively. Figure from [15],
distributed under Creative Commons CC-BY.
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Protons are low LET Radiation ...

Haas-Kogan D, Indelicato D,
Paganetti H, Esiashvili N, Mahajan
A, Yock T, Flampouri S, MacDonald
S, Fouladi M, Stephen K,
Kalapurakal J, Terezakis S, Kooy H,
Grosshans D, Makrigiorgos M,
Mishra K, Poussaint TY, Cohen K,
Fitzgerald T, Gondi V, Liu A,
Michalski J, Mirkovic D, Mohan R,
Perkins S, Wong K, Vikram B,
Buchsbaum J, Kun L. National
Cancer Institute Workshop on
Proton Therapy for Children:
Considerations Regarding
Brainstem Injury. Int J Radiat Oncol
Biol Phys. 2018 May 1;101(1):152-
168. doi:
10.1016/j.ijrobp.2018.01.013. PMID:
29619963; PMCID: PMC5903576.
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Fig. 1. Two intensity modulated proton therapy plans that display clinically equivalent dose distributions but different
linear energy transfer distributions (chordoma: dose in percentage of prescribed dose; gross tumor volume line in blue; right
column shows the mean dose-averaged linear energy transfer distributions in keV/pm). Adapted from reference (58).
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Clinical Evidence for Carbon-ion therapy

Table 2 1 1

Stare:gth of evidence. i 78 prl mary StUd'GS
Strong evidence Conflicting evidence Weak evidence . .
Chondrosarcoma Liver Oesophagus d L O O ke d a.t C I I n I C aI
Chordoma Pancreas Paediatric cancers .
Nasopharynx Central nervous system Small-cell lung I I I
MNon-small-cell lung Uterine cervix Osteosarcoma O u tCO m es (S u rVIVa b) O Ca
Oral cavity Kidney

control) and toxicity

— +  Categorized data based
on strength of evidence

Light E, Bridge P. Clinical indications for carbon-ion radiotherapy in the UK: A critical review. Radiography (Lond).
2024 Mar;30(2):425-430. doi: 10.1016/j.radi.2023.12.014. Epub 2024 Jan 9. PMID: 38199158.
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Carbon-ion Radiotherapy: Clinical Examples

Patients profit from IMPT & IMIT compared to VMAT
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Fig. 3. Percentage of patients receiving lower dose to the organs at risk when applying IMPT and/or IMIT compared to VMAT. The maximum dose received by 2% of that
specific structure (D2) and the mean dose (Dmesa) both in Gy(E) are given,
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Fig. 1. A set of re-irradiation treatment plans for a patient with a nodal recurrence of oropharynx carcinoma of the right tonsillar fossa, rcToN2,Mg. In the VMAT (left column),
IMPT (middle column) and IMIT (right column) plans, the CTVs4cy (pink) and high-dose CTV7qcy (orange). The dose-range is presented from high (red) to low (blue)

Eekers DBP, Roelofs E, Jelen U, Kirk M, Granzier M, Ammazzalorso F, Ahn PH, Janssens GORJ, Hoebers FJP, Friedmann T, Solberg T, Walsh S, Troost EGC

Kaanders JHAM, Lambin P. Benefit of particle therapy in re-irradiation of head and neck patients. Results of a multicentric in silico ROCOCO trial

Radiother Oncol. 2016 Dec;121(3):387-394. doi: 10.1016/j.radonc.2016.08.020. Epub 2016 Sep 14. PMID: 27639891
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Carbon-ion Radiotherapy: Clinical Examples
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Figure 4. Dose distribution of a representative case with tumor encircling the whole circumference of the spinal cord. a: carbon ion radiotherapy
(CIRT), b: proton therapy (PT), c: intensity-modulated radiotherapy (IMRT).

Matsumoto K, Nakamura K, Shioyama Y, Sasaki T, Ohga S, Yamaguchi T, Yoshitake T, Asai K, Kakiuchi G, Honda H. Treatment Planning
Comparison for Carbon lon Radiotherapy, Proton Therapy and Intensity-modulated Radiotherapy for Spinal Sarcoma. Anticancer Res. 2015
Jul;35(7):4083-9. PMID: 26124359.
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Treatment Planning for Carbon lon Radiotherapy
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Figure 7. Physical (dashed lines) and RBE-weighted dose (solid lines) for a single 5-cm SOBP using
protons, He- or C-ions. The physical dose shape is calculated with LEM-IV to achieve the same
RBE-weighted dose in the target region for all ions. Figure modified from [78].
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Summary: Particle Therapy

* Physical advantages of Particle Therapy
— Bragg peak
— Adjustable Bragg peak depth

— Sharp beam edges (small penumbra)

* Biological advantages of high LET Radiation

— low OER, reduced cell-cycle effect, less repair of
tumor cells; high-LET benefits partially maintained
even after spreading out the Bragg peak
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Exciting Applications of Particle Therapy

Proton Flash Therapy: Spatially fractionated radiotherapy
FAST_Ol Cllnlcal trlal Figure 3. Patient treatment plans. Axial treatment plans of contoured GTV and the dose distribution.

Mascia AE, Daugherty EC, Zhang Y, Lee E, Xiao Z,
Sertorio M, Woo J, Backus LR, McDonald JM,
McCann C, Russell K, Levine L, Sharma RA,
Khuntia D, Bradley JD, Simone CB 2nd, Perentesis
JP, Breneman JC. Proton FLASH Radiotherapy for
the Treatment of Symptomatic Bone
Metastases: The FAST-01 Nonrandomized Trial.
JAMA Oncol. 2023 Jan 1;9(1):62-69. doi:
10.1001/jamaoncol.2022.5843. Erratum in: JAMA
Oncol. 2023 May 1;9(5):728. doi:
10.1001/jamaoncol.2023.0218. PMID: 36273324;

Mohiuddin M, Lynch C, Gao M, Hartsell W. Early clinical results of
] proton spatially fractionated GRID radiation therapy (SFGRT). Br J
PMCID: PMC9585460. Radiol. 2020 Mar:93(1107):20190572. doi: 10.1259/bjr.20190572.
Epub 2019 Nov 7. PMID: 31651185; PMCID: PMC7066961
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