MOLECULAR BASIS OF CELL DEATH

MARIANNE KORITZINSKY

Princess Margaret Cancer Centre, Toronto, Canada University of Toronto, Toronto, Canada

Marianne.Koritzinsky@uhn.ca @mkoritzinsky.bsky.social

Disclosures: None

Learning objectives

- Define clonogenic cell death / survival
- Identify common cell death pathways
- Describe the relative importance of pathways for cell death caused by ionizing radiation
- Distinguish between early cell death and mitotically linked cell death

The Hallmarks of Cancer

Hanahan & Weinberg, Cell 2011

What do we mean by cell death?

- Cell death
 - Loss of reproductive (clonogenic) capacity
 - Cell may or may not appear dead
 - Cells are unable to contribute to tumor growth or metastasis goal of treatment
- For normal cells, this definition may not be relevant
 - Has no meaning for non-dividing cells
 - Different definitions may be better

How do cells die?

SENESCENCE

MITOTIC CATASTROPHE

Apoptosis

U.S. National Library of Medicine

- Active (programmed) form of cell death
- A decision to die is made

Apoptotic machinery

- Sensors
 - Monitor extracellular (extrinsic pathway) and intracellular (intrinsic pathway) environment for conditions of normality and abnormality e.g. hypoxia, growth factors, damage

- Effectors
 - Intracellular proteases called caspases

Effectors: caspases

- Executioners of apoptosis
 - Cleave proteins at certain sites
- Disassemble the cell
- Present in a pro-form (inactive)

Caspase cascade

Initiator caspases (8, 9)

Irreversible "switch" for cell death

Extrinsic pathway – death receptors

Extrinsic – caspase 8 – signal given to the cell

ReceptorsLiTRAILR1, TRAILR2TTNFR1TFASF

Ligands TRAIL TNF FASL

Intrinsic pathway – mitochondria dependent

 Mitochondria induce apoptosis when pro-apoptotic factors outnumber anti-apoptotic factors

Intrinsic pathway

Temerty

Medicine

Radiation Oncology

INIVERSITY OF TORONTO

Mitochondria :

Storage site for apoptosis regulating molecules

Step 2) Release of cytochome C, formation of apoptosome

Step 3) Activation of caspase 9

How do cells die?

APOPTOSIS

AUTOPHAGY

NECROSIS

SENESCENCE

MITOTIC CATASTROPHE

Autophagy -- to eat oneself

Autophagy

- Important survival mechanism during short-term starvation
 - Degradation of non-essential cell components by lysosomal hydrolases
 - Degradation products are transported back to cytoplasm for reuse in metabolism
- Important mechanism for quality control
 - Removal of defective organelles, proteins

Autophagy – survival or death?

How do cells die?

AUTOPHAGY

NECROSIS

SENESCENCE

MITOTIC CATASTROPHE

Necrosis

- Insults inducing necrosis
 - Defective membrane potential
 - Cellular energy depletion
 - Nutrient starvation
 - Damage to membrane lipids
 - Loss of function of ion channels/pumps

Execution of necroptosis

Radiation Oncology UNIVERSITY OF TORONTO Nature Reviews | Molecular Cell Biology

How do cells die?

AUTOPHAGY

NECROSIS

SENESCENCE

MITOTIC CATASTROPHE

Senescence - permanent loss of proliferative capacity

Radiation Oncology UNIVERSITY OF TORONTO

Senescence

- Associated with aging
 - Telomere shortening can induce senescence
 - Limits proliferation in normal cells
- Accelerated senescence
 - Induced by oncogenes, DNA damage
 - Permanent checkpoint activation

How do cells die?

AUTOPHAGY

NECROSIS

SENESCENCE

MITOTIC CATASTROPHE

Mitotic catastrophe

Temerty

Medicine

adiation Oncology

VERSITY OF TORONTO

- Mitotic catastrophe
 - Cells attempt to divide without proper repair of DNA damage
- May lead to secondary death by apoptosis, necrosis, autophagy, or senescence

Mitotic catastrophe is caused by chromosome aberrations

Radiation Oncology

NIVERSITY OF TORONTO

Medicine

Mitotic catastrophe

Temerty Medicine

Radiation Oncology

UNIVERSITY OF TORONTO

Figure 3 - Micronucleated crythrocyte (arrow) in R. Catesbeiana tadpole exposed to lambda-cyhalothrin. Giemsa-stained blood smear 1,000 x.

Mitotic catastrophe

- Mitotic catastrophe takes place at long times after initial damage (irradiation)
 - Depends on proliferation rate

• Influenced by DNA repair capacity

- Cells may attempt several divisions
 - Genome becomes so unstable as to no longer support normal cell function

What about radiation?

- What is the contribution of these death pathways to radiation sensitivity ?
 - The genes controlling these pathways are frequently mutated in cancer
 - The propensity to initiate programmed cell death varies widely

How do cells die?

AUTOPHAGY

NECROSIS

SENESCENCE

MITOTIC CATASTROPHE

Radiation Oncology UNIVERSITY OF TORONTO

Radiation Oncology

Radiation Oncology

Premitotic

death

Temerty

Medicine

Radiation Oncology

UNIVERSITY OF TORONTO

Radiation Oncology

Radiation Oncology

Two types of apoptosis - pre and post mitotic

Radiation Oncology

UNIVERSITY OF TORONTO

Medicine

Endlich et al (2000)

Apoptosis is both a reason for cell death and a type of funeral

- Early apoptosis: Apoptosis is the <u>reason</u> the cell dies it is the most sensitive mode of cell death and genes that affect apoptosis also affect cell death - e.g. some lymphomas and leukemias.
- Delayed apoptosis: The reason the cell dies is usually by mitotic catastrophe. However, the cell may, or may not, have an apoptotic "funeral". Changing apoptotic sensitivity does not change overall cell killing - e.g. most epithelial cancers.

Apoptosis can change without affecting clonogenic survival

Radiation Oncology UNIVERSITY OF TORONTO Wouters et al., Cancer Research (1997)

Affecting how cells die can dramatically influence the rate at which cells die

Early apoptosis explains:

• The sensitivity of lymphocytes at low radiation dose.

 The efficacy of low dose radiation dose in non-hodgkin lymphomas: 2x2 Gy results in a high proportion of responses in Low grade non-Hodgkin Lymphoma

Summary of many clinical-preclinical studies

- The mechanism of killing of the cells of solid tumors is not by early apoptosis.
- Solid tumor cells may die of apoptosis, but it is by postmitotic (delayed) apoptosis.
- Modification of post-mitotic apoptosis does not usually change overall cell kill.

(Brown and Attardi, Nat Rev Cancer, 5: 232, 2005)

Conclusions

- Most cell death is controlled or programmed in some way
 - Include apoptosis, senescence, autophagy and necrosis
- Most cell death after radiation occurs in response to mitotic catastrophe and not from the initial damage done by the radiation
 - Cells that proliferate slowly may die at long times after irradiation
- Measuring cell death (e.g. apoptosis) will not necessarily correlate with how many cells die
 - Cells die by other mechanisms
- Genetic changes may dramatically alter how cells die without changing probability of survival

Thank you!

MARIANNE KORITZINSKY

Princess Margaret Cancer Centre, Toronto, Canada University of Toronto, Toronto, Canada

Marianne.Koritzinsky@uhn.ca @mkoritzinsky.bsky.social

