Combining Radiation and Chemotherapy

Drew Hope

Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer.

M. Morris et al, NEJM, 340:1137-1143, 1999

Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer

	RT (n = 193)	RT + Chemo (n = 193)
5 yr OS	58%	73%*
L/R Recurrence	35%	19%*
Distant Recurrence	33%	14%*

RT: 45 Gy + brachytherapy (total dose \ge 85 Gy) Chemo: cddp (75mg/m², d1), 5Fu (1g/m²/d, d1-4), x3

M. Morris et al, NEJM, 340:1137-1143, 1999

Ways to combine radiation and chemotherapy

- Spatial co-operation
 - e.g. breast carcinoma, SCLC
- Independent cell kill
 - e.g. Hodgkin's disease
- Non-overlapping toxicity
 e.g. Hodgkin's disease
- Interaction
 - e.g. H&N, cervix, NSCLC

Ways to combine radiation and chemotherapy

- Spatial co-operation
 - e.g. breast carcinoma, SCLC
- Independent cell kill
 - e.g. Hodgkin's disease
- Non-overlapping toxicity

 e.g. Hodgkin's disease
- Interaction
 - -e.g. H&N, cervix, NSCLC

Spatial Co-operation

Radiotherapy for local disease; chemotherapy for systemic disease

- Radiotherapy delivered to "protected" sites
 - Prophylactic cranial irradiation for small cell lung cancer
 - CNS irradiation following chemotherapy for leukemia

Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. (Danish Breast Cancer Cooperative Group 82b Trial)

Margaret

M. Overgaard et al., N. Engl. J. Med., 337: 949-955, 1997

Prophylactic Cranial Irradiation in Extensive Small-Cell Lung Cancer

The difference in the cumulative incidence of brain metastases between the irradiation group and the control group was significant (P<0.001, by Gray's method).

Slotman, B. et al., N. Engl. J. Med., 2007;357:664-72

Prophylactic Cranial Irradiation in Extensive Small-Cell Lung Cancer

Figure 3. Overall Survival.

Patients in the irradiation group had a longer median overall survival (6.7 months) than did those in the control group (5.4 months) (P=0.003; hazard ratio, 0.68; 95% Cl, 0.52 to 0.88).

Slotman, B. et al., N. Engl. J. Med., 2007;357:664-72

Ways to combine radiation and chemotherapy

- Spatial co-operation
 - e.g. breast carcinoma, SCLC
- Independent cell kill
 - e.g. Hodgkin's disease
- Non-overlapping toxicity
 e.g. Hodgkin's disease
- Interaction
 - -e.g. H&N, cervix, NSCLC

Stage I and II Hodgkin disease (very favorable and favorable categories)

	RT (EF, 40 Gy)	CH (MOPP/ABVD)	CH + RT (IF, ≤ 40 Gy)
10Y OS	80-90%	80-90%	~90%
Complications (RR)			
leukemia	11.0	70.0	reduced
lymphoma	21.0	22.0	reduced
solid tumor	2.8	1.1	reduced
cardiac	2.2-3.1	≈1.0	reduced

Hodgson, Hematology 2011

Cumulative incidence of invasive breast cancer after RT for Hodgkin disease

Hodgson, Hematology 2011

Ways to combine radiation and chemotherapy

- Spatial co-operation
 - e.g. breast carcinoma, SCLC
- Independent cell kill
 - e.g. Hodgkin's disease
- Non-overlapping toxicity

 e.g. Hodgkin's disease
- Interaction
 - e.g. H&N, cervix, NSCLC

Meta analysis

Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomised trials and 17,346 patients

Jean-Pierre Pignon ^{a,*}, Aurélie le Maître ^a, Emilie Maillard ^a, Jean Bourhis ^b, on behalf of the MACH-NC Collaborative Group ¹

^a Department of Biostatistics and Epidemiology, Institut Gustave-Roussy, Villejuif, France ^b Department of Radiotherapy, Institut Gustave-Roussy, Villejuif, France

Pignon et al, Radioth Oncol 2009: 92; 4-14

.

VOLUME 28 · NUMBER 13 · MAY 1 2010

JOURNAL OF CLINICAL ONCOLOGY

From the Unit of Biostatistics and Epidemiology and Radiation Oncology, Institut Gustave-Roussy, Villejuif; Institut de Cancérologie de la Loire, Department of Medical Oncology, Saint Etienne; Institut Universita de Recherche Clinique, Università Montpellier – Statistical Unit, Montpellier, University of Paris-South, Paris, France; Bodine Center, Department of Radiation Oncology, Department of Radiation Therapy Oncology Group Statistics, American Collece of Radioloxy. Philadel-

Meta-Analysis of Concomitant Versus Sequential Radiochemotherapy in Locally Advanced Non–Small-Cell Lung Cancer

Anne Aupérin, Cecile Le Péchoux, Estelle Rolland, Walter J. Curran, Kiyoyuki Furuse, Pierre Fournel, Jose Belderbos, Gerald Clamon, Hakki Cuneyt Ulutin, Rebecca Paulus, Takeharu Yamanaka, Marie-Cecile Bozonnat, Apollonia Uitterhoeve, Xiaofei Wang, Lesley Stewart, Rodrigo Arriagada, Sarah Burdett, and Jean-Pierre Pignon

Radiation Oncology

Auperin et al., J Clin Oncol 28:2181-2190. 2010

Overall Survival

Auperin et al., *J Clin Oncol 28:2181-2190*. 2010

Local Control

RT + conc CT effect: Log-rank test = 6.16, P = .01

Auperin et al., J Clin Oncol 28:2181-2190. 2010

Distant Control

Combined chemo- and radiotherapy

Clinical and Experimental Radiobiology Course 2025

Dose

Combined chemo- and radiotherapy

Combined chemo- and radiotherapy

Enhancement

Non-interaction

Inhibition

Rationale for combining chemotherapeutic agents and ionizing radiation

- modulation of DNA/chromosome repair
- regulation of tumor cell proliferation
- increased tumor cell loss
- increased tumor cell re-oxygenation

Antimetabolites

	DNA da induction	mage repair	Chromosome aberration	Cell Cycle	Apoptosis
г		1.			ſ
5-FU	-	-/+	-	+	ſ
MTX	?	?	?	?	?
HU	?	-/+	+	+	?
dFdC	-	-	+	+	-
F-ara-A	-	-	+	+	-?

Plant derivatives

	DNA da induction	mage repair	Chromosome aberration	Cell Cycle	Apoptosis
	2		2		2
Vinca-alkaloids	f.	-	:	+	?
Etoposide	?	+?	-	+	+
Camptothecine	?	?	-	-/+	-/+
Taxanes	?	-	+	+	+

Antibiotics

	DNA da induction	mage repair	Chromosome aberration	Cell Cycle	Apoptosis
Adriamycin	-	-/+	-/+	+	?
Mitomycin-C	?	?	-	?	?
Bleomycin	?	-	-/+	+	?
Actinomycin-D	?	+?	?	?	-

Alkylating agents

	DNA da induction	mage repair	Chromosome aberration	Cell Cycle	Apoptosis
Cis-platinum	+?	+	?	-	?
BCNU	?	+	-	?	?
Cyclophosphamide	?	?	-	?	?

Therapeutic ratio

	Acute effect	Late effect
Antimetabolites 5-Fu MTX HU dFdC F-ara-A	++ (GI, skin) ++ (GI) ++ (GI) ++ (GI)± (lung) ++ (GI)± (CNS)	
Alkylating agents cis-platinum BCNU cyclophosphamide	++ (GI)+ (kidney) ++ (GI)+ (lung) ++ (GI <i>,</i> skin)	+ (lung, bladder, CNS)
Antimetabolites adriamycine mitomycin-C bleomycin actinomycine-D	++ (GI, skin) ++ (GI, BM) ++ (skin, GI) ++ (GI, BM, skin)	+ (heart, lung) + (lung) + (skin, lung) + (lung)
Plant derivatives Vinca-alcaloides Etoposide Taxanes	- (GI, BM) ? + (GI)	? ? ?

Combined chemo- and radiotherapy treatment:normal tissue toxicity

Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer.

M. Morris et al, NEJM, 340:1137-1143, 1999.

	RT (n = 193)	RT + Chemo (n = 193)
Early toxicity (G3-5)	10 (5%)	88 (45%)
Early toxicity* (G3-5)	4 (2%)	20 (10%)
Late toxicity (G3-5)	22 (11%)	24 (12%)

* non hematologic only

RT: 45 Gy + brachytherapy (total dose \geq 85 Gy) Chemo: cddp (75mg/m², d1), 5Fu (1g/m²/d, d1-4), x3

Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer.

M. Morris et al, NEJM, 340:1137-1143, 1999.

Combined chemo- and radiotherapy treatment

- Can improve efficacy of RT alone
- Whether this widens the therapeutic ratio or not is often not evaluated rigorously in clinical trial setting
- Doses of both agents may require adjustment to maintain isotoxicity (early vs late)
- Designs should explicitly incorporate assessment of therapeutic ratio

