Importance of Radiobiology in the Clinic

Scott V. Bratman, MD PhD

Clinician-Scientist & Associate Professor Radiation Oncology & Medical Biophysics Princess Margaret Cancer Centre University of Toronto

April 7, 2025

Disclosures

Patents/Licensing: Roche, Adela Ownership: Adela

Overview

<u>Purpose</u>: To introduce radiobiology concepts with direct clinical relevance

- A brief overview of clinical implementation of radiotherapy
- The therapeutic index
- The 5 R's of radiobiology
- Radiobiology in the 21st Century

Learning Objectives

- Recognize the role of single dose and fractionated radiotherapy in cancer treatment.
- Identify the 5 R's of radiotherapy: radiosensitivity, repopulation, re-oxygenation, repair, redistribution.
- Understand the basic concepts relating to acute and late radiotherapy toxicity.

Overview

<u>Purpose</u>: To introduce radiobiology concepts with direct clinical relevance

- A brief overview of clinical implementation of radiotherapy
- The therapeutic index
- The 5 R's of radiobiology
- Radiobiology in the 21st Century

Radiotherapy is a longstanding therapeutic pillar in oncology

Radiotherapy for Cancer

Half of all cancer patients will receive radiotherapy during their course of disease

Most common goal is to achieve local control or slow local tumor growth

Curative vs Palliative Intent:

- <u>Curative</u>: Given alone or in combination with surgery and/or systemic therapy in a clinical setting where local control can translate into cure
- <u>Palliative</u>: Given in clinical settings where cure is not feasible, but where local control can provide symptomatic relief (e.g., pain, bleeding)

Common Clinical Delivery of Radiotherapy

- Fractionated External Beam Radiotherapy: Photons (typically high-energy 6-25 MV that deposit energy deep within tissue and spare skin), electrons, or other particles (e.g., protons) given as a series of treatments/fractions over multiple days or weeks.
- Stereotactic Radiotherapy: One/few fraction(s) of higher doses (≥6 Gy) given as stereotactic external beam radiation to a small volume
- **Brachytherapy:** Interstitial radioactive implants given at high or low dose rate to a small volume
- Radionuclide therapy: Systemically administered radionuclides to treat organspecific disease based on physiological uptake or specific cellular targets based on antibody conjugation

What is the most common direct goal of radiotherapy?

Radiotherapy for Cancer

- <u>Local tumour control</u> is dictated by the eradication of all TUMOUR CLONOGENS
 - Impact of dose to the tumour
 - Impact of dose to nearby healthy tissues/organs
 - Impact of the 5 R's of radiobiology

Clinical Radiotherapy: Identifying the Target

- CT scan of the region of interest
- Radiation oncologist contours the tumour & normal structures
- A margin is added to contours to account for microscopic spread, organ motion, and uncertainty
- Dosimetrist will execute beam arrangements
- Physicist conducts QC on linear accelerator, beams, and calculated dose

Temerty Medicine

Clinical Radiotherapy: Treating the Target

Conformal techniques utilize multiple intersecting beams or arcs

Baumann, Nature Rev Cancer 2016 Clinical and Experimental Radiobiology Course 2025

Clinical Radiotherapy: Assessing Dose Distributions

Baumann, Nature Rev Cancer 2016

Clinical Radiotherapy: Assessing Dose Distributions

• DVH reports the radiotherapy dose to normal and tumour tissues

Temerty Medicine

SITY OF TORONTO

• OPTIMIZE TREATMENT = high dose to tumour; low dose to normal tissues

Baumann, Nature Rev Cancer 2016 Clinical and Experimental Radiobiology Course 2025

Clinical Radiotherapy: Image Guidance

Orthogonal imaging

d

External Fiducials

Internal Fiducials

Verellen, 2007

Goal: Reduce uncertainty of positioning for tumor and organs-at-risk (i.e., PTV)

Clinical and Experimental Radiobiology Course 2025

Overview

<u>Purpose</u>: To introduce radiobiology concepts with direct clinical relevance

- A brief overview of clinical implementation of radiotherapy
- The therapeutic index
- The 5 R's of radiobiology
- Radiobiology in the 21st Century

Radiotherapy for Cancer

- <u>Local tumour control</u> is dictated by the eradication of all TUMOUR CLONOGENS
 - Impact of dose to the tumour
 - Impact of dose to nearby healthy tissues/organs
 - Impact of the 5 R's of radiobiology
- **THERAPEUTIC INDEX** is maximized when more tumour cells than normal cells are killed
 - <u>Physical means</u> for maximizing
 - <u>Radiobiological means</u> for maximizing

Therapeutic Index

Temerty Medicine

Harrington and Nutting, Curr Opin Investig Drugs 2002

Clinical and Experimental Radiobiology Course 2025

Augmenting the Therapeutic Index: Physical Precision of RT Delivery

adiation Oncology

What would a drug that radiosensitizes both tumour and normal tissue do to the therapeutic index?

Normal Tissue Effects

The time to expression of normal tissue injury depends on its turnover:

ACUTE RESPONDING TISSUES

- Are rich in stem cells and proliferative progenitor cells that differentiate into functional cells with a high turnover and a high rate of cell loss
- Days-to-weeks
- E.g., Gut, Skin, Bone Marrow, Mucosa

LATE RESPONDING TISSUES

- Have a slow turnover rate and stem cells play a smaller role in regeneration, which generally is from the functional cellular pools after a longer lag time
- Months-to-years
- E.g., Brain, Spinal Cord, Kidney, Lung, Blood Vessels

Examples of Normal Tissue Effects

Erythema

Desquamation

Telangiectasia

Overview

<u>Purpose</u>: To introduce radiobiology concepts with direct clinical relevance

- A brief overview of clinical implementation of radiotherapy
- The therapeutic index
- The 5 R's of radiobiology
- Radiobiology in the 21st Century

The Five R's of Radiotherapy

- Radiosensitivity
- Repair
- Repopulation
- Redistribution
- Reoxygenation

How is the use of fractionated radiotherapy affected by each of these?

Tumor Types have a Range of Intrinsic Radiosensitivities

	Example	Dose (Gy)	Tumor control probability
Sensitive	Seminoma, Lymphoma	≤ 45	≥ 90%
Intermediate	Most carcinomas (e.g., squamous, adeno)	50-70	30-90% (based on number clonogens)
Resistant	Glioblastoma, Melanoma	≥ 60	<30%

Mis-Repair of DNA Damage:

Double-strand breaks (DSBs) are the major mechanism of cell death following ionizing radiation, and repair can occur between fractions

Temerty

Medicine Wang et al, Trends Pharmacol Sci. 2018 Jan;39(1):24-48. Clinical and Experimental Radiobiology Course 2025

Tumor Cell Repopulation:

More repopulation is observed during extended courses of fractionated radiotherapy

Cell Cycle Redistribution:

Cell cycle phase affects radiosensitivity, and fractionation allows surviving cells to re-enter sensitive phases

Temerty

Medicine Sinclair & Morton, Radiat Res, 29 (1966), pp. 450-474 Clinical and Experimental Radiobiology Course 2025

Tumor Reoxygenation:

Abnormal tumor vasculature can cause hypoxia, and fractionation can allow for re-oxygenation

(adapted from Brown and Wilson; Nature, 2004)

Clinical and Experimental Radiobiology Course 2025

Would tumour hypoxia have a greater effect on singlefraction (e.g., SRS) or multi-fraction radiotherapy?

At the height of COVID-19, hospitals tried to reduce the number of radiotherapy fractions in order to limit exposure to patients & staff.

How would dose need to be adjusted to allow for equal tumour control probability?

Overview

<u>Purpose</u>: To introduce radiobiology concepts with direct clinical relevance

- A brief overview of clinical implementation of radiotherapy
- The therapeutic index
- The 5 R's of radiobiology
- Radiobiology in the 21st Century

Opportunities for Advancing Precision Radiation Medicine

Radiation Oncology

19

Clinical and Experimental Radiobiology Course 2025

Opportunities for Advancing Precision Radiation Medicine

Advancing Precision Radiotherapy in the 21st Century

- Build on Physical/Technical Precision with Biological Precision
- Optimize radiotherapy fractionation schemes to maximize therapeutic index
- Use Molecular Subtyping/Signatures for biomarker-guided individualized treatments (e.g., risk stratification, prediction, and response monitoring)
- Develop molecularly-targeted drugs and radionuclides
- Delivery of radioprotective agents to affected normal tissues
- Integrate with Immunotherapy and understand Immune Effects of radiotherapy

Questions?

Clinical and Experimental Radiobiology Course 2025

Thank you!

Scott Bratman

scott.bratman@uhn.ca

Clinical and Experimental Radiobiology Course 2025