Modified Fractionation Schedules (and Limits)

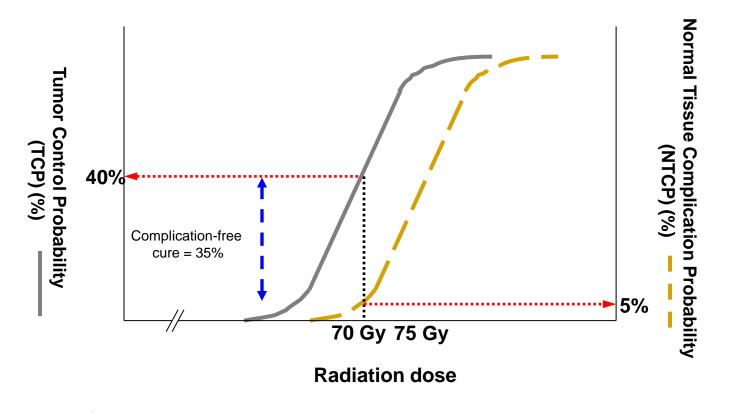
Scott V. Bratman, MD PhD

Clinician-Scientist & Associate Professor Radiation Oncology & Medical Biophysics Princess Margaret Cancer Centre University of Toronto

April 11, 2025

Disclosures

Patents/Licensing: Roche, Adela Ownership: Adela



Learning Objectives

- Define different types of fractionation schedules.
- Identify the balance between tumor control and early and late toxicity when changing dose-time-fractionation.
- Explain the interest in hypofractionation schedules in several tumor types.

Therapeutic Index

Standard/conventional fractionation

1.8 – 2.0 Gy per fraction, 5 fractions per week

	Example	Dose (Gy)	Tumor control probability
Sensitive	Seminoma, Lymphoma	≤ 45	≥ 90%
Intermediate	Most carcinomas (e.g., HNSCC, breast, prostate)	50-70	30-90%
Resistant	Glioblastoma, Melanoma	≥ 60	<30%

Overview: Types of modified fractionation schedules

- Hyperfractionation
- Accelerated fractionation
- Hypofractionation

Overview: Types of modified fractionation schedules

Hyperfractionation

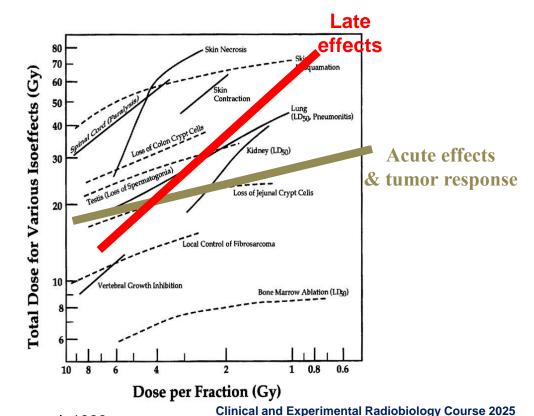
- Accelerated fractionation
- Hypofractionation

Reduced dose per fraction, greater number of fractions

Sensitivity of different tissues to fraction size

"Typical" dose per fraction

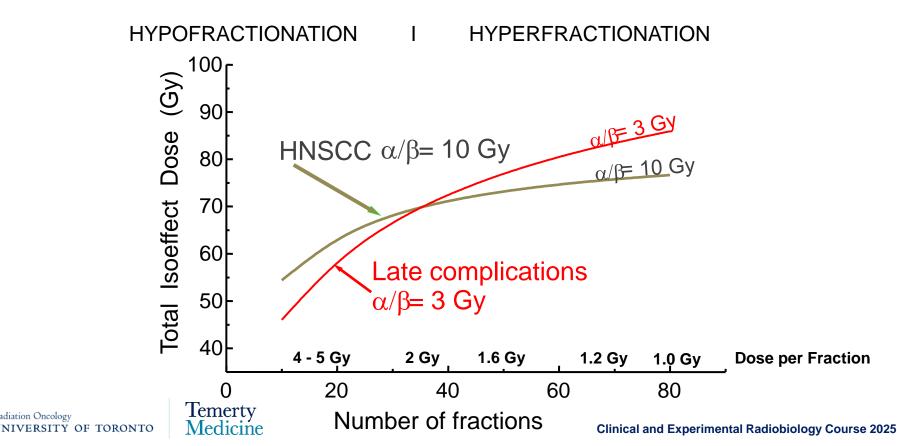
 1.8-2 Gy for standard/ conventional fractionation


Temerty

Medicine

• 1.1-1.3 Gy for hyperfractionation

adiation Oncolog


VERSITY OF TORONTO

Withers et al, 1983

Hyperfractionation in Head & Neck Squamous Cell Carcinoma (HNSCC)

Radiation Oncology

Hyperfractionation

reduced dose per fraction (< 1.8 Gy, usually 1.1-1.3 Gy)

Conventional:

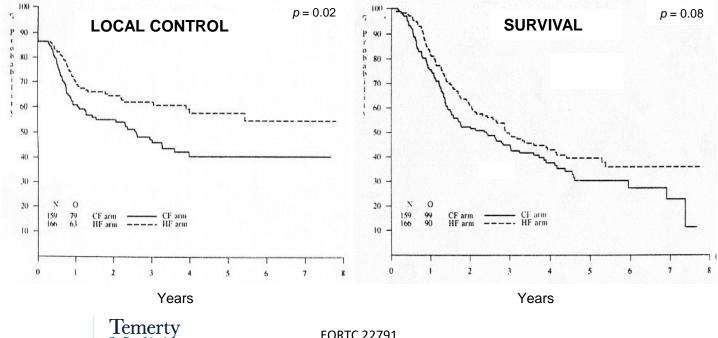
70Gy/ 2.0 Gy/ 7w

Hyperfractionated:

80.5Gy/ 2x1.15 Gy/ ti=6h/ 7w

Goals & Expectations:

- Increased tumor control through dose-escalation
- More severe early reactions
- Unchanged or less late reactions



EORTC Hyperfractionation trial in oropharynx cancer

Oropharyngeal Cancer T2-3, N0-1 (N = 356 patients)

70 Gy - 35-40 fx in 7 wks (Conventional) Vs. 80.5 Gy - 70 fx in 7 wks (Hyperfractionated)

Radiation Oncology UNIVERSITY OF TORONTO

EORTC 22791 Horiot et al., *Radiother. Oncol.* 25: 231-241, 1992

EORTC Hyperfractionation trial in oropharynx cancer

Oropharyngeal Cancer T2-3, N0-1 (N = 356 patients)

70 Gy - 35-40 fx in 7 wks (Conventional) Vs. 80.5 Gy - 70 fx in 7 wks (Hyperfractionated)

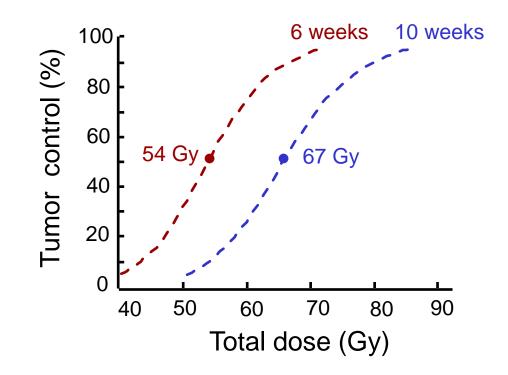
	Treatment	Total		
	CF arm	HF arm		
Total	159	166	325	
Inevaluable	1	4	5	
Total	158	162	320	
Objective mucosal reactions:				
None	1	-	1	
G ₁ : mild mucositis	13 (8%)	7 (4.5%)	20	
C : patchy muccositio	66 (42%)	47 (20%)	112	
G ₃ : diffuse mucositis	78 (49%)	108 (66.5%)	186	
Functional mucosal reactions	:			
None	1	2	3	
G ₁ : mild irritation	21 (13%)	13 (8%)	34	
G ₂ : moderate irritation	72 (45.5%)	73 (45%)	145	
G ₃ : liquid diet only	47 (30%)	48 (30%)	95	
G ₄ : oral alim. impossible	17 (11%)	26 (16%)	43	
Stopped <70 Gy	7 (4.5%)			
Stopped <80 Gy		12 (7.5%)		

ACUTE TOXICITY

LATE TOXICITY

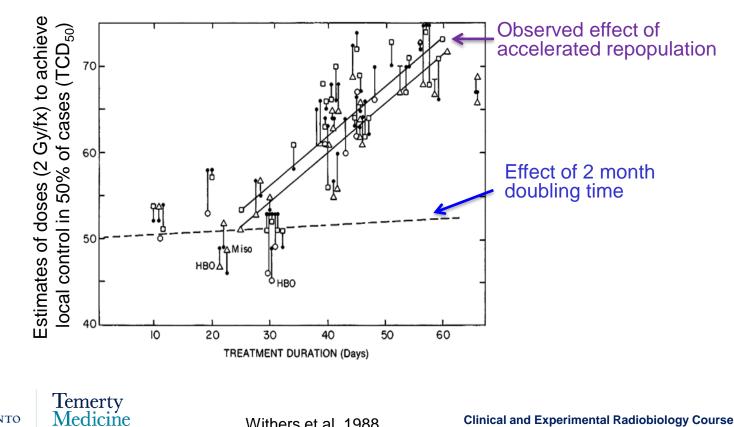
EORTC 22791 Horiot et al., *Radiother. Oncol.* 25: 231-241, 1992

Overview: Types of modified fractionation schedules


- Hyperfractionation
- Accelerated fractionation
- Hypofractionation

Shortened overall treatment time, dose per week > 10 Gy

Influence of overall treatment time on HNSCC local control



Temerty

Medicine

Overgaard et al, 1988

Influence of overall treatment time on HNSCC local control

Withers et al, 1988

Tissue proliferation and recovered dose

Tissue	D _{prolif} (Gy.d ⁻¹)	T_k^{*} (days)		
Early normal tissue reactions				
Skin (erythema)	0.12 (-0.12-0.22)	< 12		
Mucosa (mucositis)	0.8 (0.7-1.1)	< 12		
Lung (pneumonitis)	0.54 (0.13-0.95)	n.a.		
Tumors				
Head and neck				
• larynx	0.74 (0.3-1.2)	n.a.		
• tonsils	0.73	30		
• various	0.8 (0.5-1.1)	21		
• various	0.64 (0.42-0.86)	n.a.		
NSCLC	0.45	n.a.		
Medulloblastoma	0.52 (0.29-0.71	0-21		

* onset of accelerated proliferation

Accelerated fractionation

Shortened overall treatment time, dose per week > 10 Gy

Conventional

1888 1888 1888 1888 1888 1888 1888

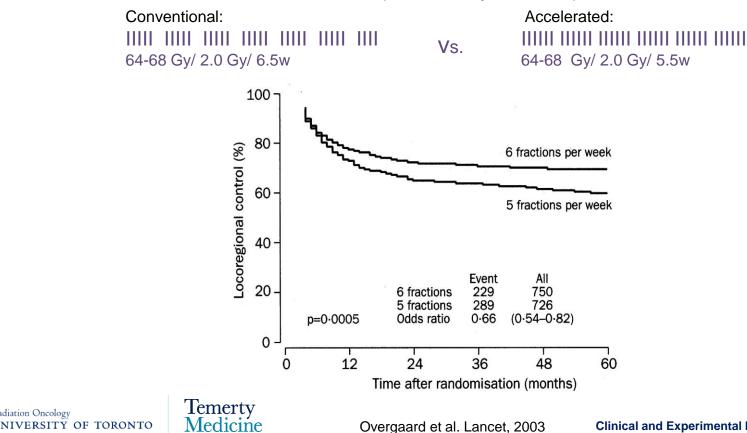
70Gy/ 2.0 Gy/ 7w

Pure accelerated fractionation

70Gy/ 2.0 Gy/ 6w

Concomitant boost

70Gy/ 2.0 Gy/ 5w

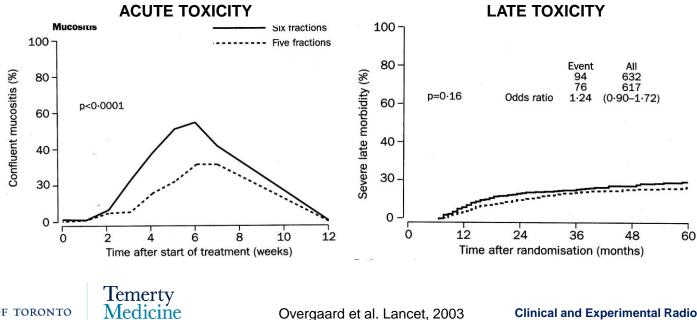


Goals & Expectations:

- Increased tumor control through reduced accelerated repopulation
- Increased early reactions
- Similar late toxicity

DAHANCA 6&7 randomized trials

HNSCC (n=1476 patients)



Radiation Oncology

DAHANCA 6&7 randomized trials

HNSCC (n=1476 patients)

Conventional:	Accelerated:			
 64-68 Gy/ 2.0 Gy/ 6.5w	Vs.			

Overgaard et al. Lancet, 2003

Accelerated Fractionation with Hyperfractionation

Shortened overall treatment time Dose per week > 10 Gy Reduced dose per fraction

Conventional:

Accelerated/hyperfractionated:

Goals & Expectations:

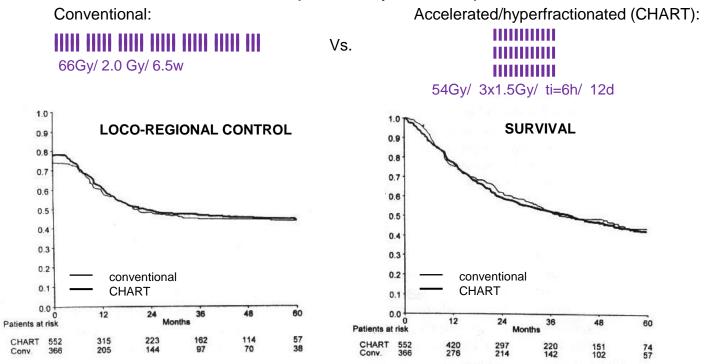
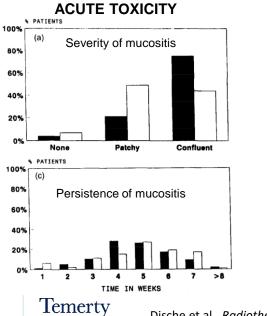

- Increased tumor control
- Increased (and faster) early reactions
- Reduced late toxicity

CHART randomized trial (MRC UK)

HNSCC (n=918 patients)

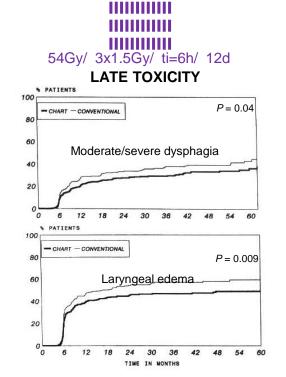
Temerty Medicine

Dische et al., Radiother. Oncol. 44: 123-136, 1997


CHART randomized trial (MRC UK)

HNSCC (n=918 patients)

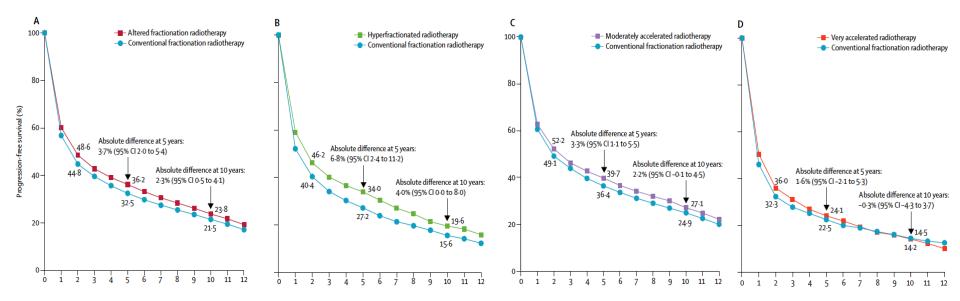
Vs.



66Gy/ 2.0 Gy/ 6.5w

Medicine

Accelerated/hyperfractionated (CHART):



Dische et al., Radiother. Oncol. 44: 123-136, 1997

Meta-analysis on altered fractionation HNSCC

Randomized trials 1970-2010 (no postop RT) 33 trials included (11,423 patients, individual data)

Lacas et al., Lancet Oncol. 2017; 18(9):1221-1237 Clinical and Experimental Radiobiology Course 2025

Meta-analysis on altered fractionation HNSCC

	Comparisons (n)	Patients (n)	Proportion of patients with toxicity receiving altered fractionation radiotherapy*	Proportion of patients with toxicity receiving conventional radiotherapy, n/N (%)	Odds ratio (95% CI)	p value for safety	1 ²	p value for heterogeneity
Acute toxicities							_	
Mucositis (all trials)	20	8541	38.9%	1155/4233 (27·3%)	2.02 (1.81–2.26)	<0.0001	78%	<0.0001
Mucositis (no heterogeneity)	16	7051	35.2%	845/3499 (24·1%)	2.10 (1.84–2.41)	<0.0001	0%	0.66
Dermatitis (all trials)	15	4997	17.7%	410/2483 (16.5%)	1.09 (0.93-1.29)	0.29	36%	0.083
Dermatitis (no heterogeneity)	13	4314	20.1%	376/21 43 (17·5%)	1.20 (1.01-1.42)	0.041	0%	0.83
Weight loss (all trials)	5	2053	3.6%	43/1023 (4·2%)	0.87 (0.56-1.36)	0.54	7%	0.37
Need for feeding tube (all trials)	6	2859	52·1%	563/1420 (39.6%)	1.75 (1.49-2.05)	<0.0001	89%	<0.0001
Need for feeding tube (no heterogeneity)	4	1871	35.6%	252/929 (27·1%)	1.63 (1.34–1.99)	<0.0001	3%	0.38
Late toxicities								
Xerostomia (all trials)	12	4726	51.3%	1193/2337 (51·0%)	1.01 (0.88–1.14)	0.94	20%	0.25
Xerostomia (no heterogeneity)	11	4414	54.6%	1181/2182 (54·1%)	1.02 (0.90–1.17)	0.73	0%	0.50
Bone toxicity (all trials)	11	3219	4.4%	<mark>64/1585 (4</mark> ∙0%)	1.12 (0.80-1.57)	0.52	0%	0.77
Mucosal toxicity (all trials)	8	2298	14.5%	149/1114 (13·4%)	1.10 (0.87-1.40)	0.41	49%	0.058
Mucosal toxicity (no heterogeneity)	7	1921	14.4%	140/937 (14·9%)	0.96 (0.74-1.24)	0.74	0%	0.64
Neck fibrosis (all trials)	15	5557	7.6%	188/2744 (6·9%)	1.13 (0.92–1.39)	0.23	70%	<0.0001
Neck fibrosis (no heterogeneity)	12	4250	7.0%	138/2109 (6.5%)	1.09 (0.85–1.38)	0.50	0%	0.45

Overview: Types of modified fractionation schedules

- Hyperfractionation
- Accelerated fractionation
- Hypofractionation

Increased dose per fraction, smaller number of fractions

Hypofractionation

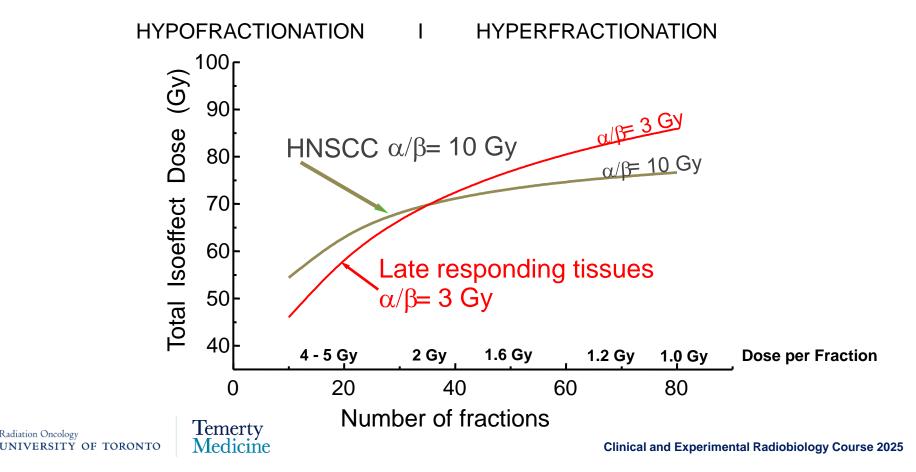
Increased dose per fraction (> 2.2 Gy)

78Gy/ 2.0 Gy/ 8w

Conventional Fractionation

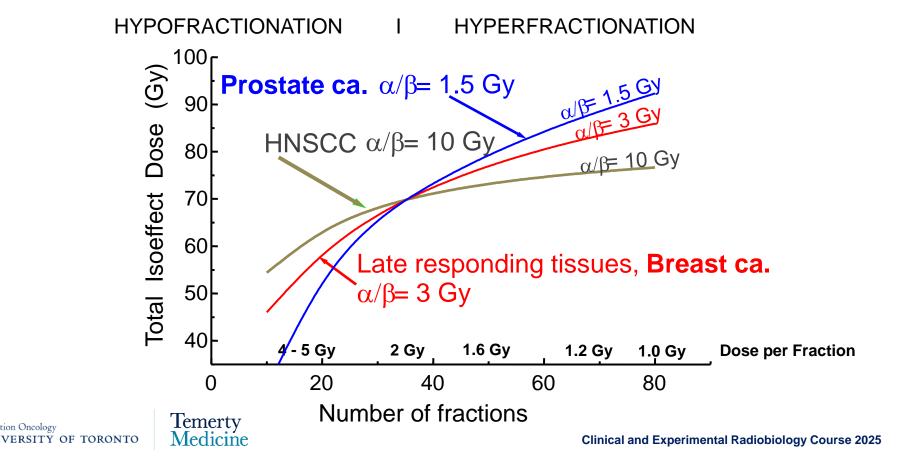
60Gy/ 3 Gy/ 4w

Moderate Hypofractation with Acceleration


42.7 Gy/ 6.1 Gy/ 2.5w

Ultra Hypofractionation with Acceleration

Radiation Oncology



Hypofractionation in Prostate and Breast Cancers

Hypofractionation in Prostate and Breast Cancers

adiation Oncolog

Improvements in conformal irradiation of prostate cancer

Dearlaney, 1999

Moderate Hypofractionation in Prostate Cancer

Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial

David Dearnaley, Isabel Syndikus, Helen Mossop, Vincent Khoo, Alison Birtle, David Bloomfield, John Graham, Peter Kirkbride, John Logue, Zafar Malik, Julian Money-Kyrle, Joe M O'Sullivan, Miguel Panades, Chris Parker, Helen Patterson*, Christopher Scrase, John Staffurth, Andrew Stockdale, Jean Tremlett, Margaret Bidmead, Helen Mayles, Olivia Naismith, Chris South, Annie Gao, Clare Cruickshank, Shama Hassan, Julia Pugh, Clare Griffin, Emma Hall, on behalf of the CHHiP Investigators

74 Gy (37 x 2 Gy) in 7.4 wvs.60 Gy (20 x 3.0 Gy) in 4wvs.57 Gy (19 x 3 Gy) in 3.8wConventionalHypofractionated/AcceleratedHypofractionated/AcceleratedHypofractionated/Accelerated

Dearnaley et al., Lancet Oncology, 2016

Moderate Hypofractionation in Prostate Cancer

DISEASE CONTROL **BOWEL TOXICITY** 100 Grade 0 Grade 1 Grade 2 Grade 3+ 100-— 74 Gy ------- 60 Gy 80 ----- 57 Gy 80 Patients with a bowel adverse event (%) Biochemical or clinical failure-free survival (%) 60 60 40 40 20 20. 60 Gy vs 74 Gy HR 0.84 (90% CI 0.68-1.03), log-rank p=0.16 74 Gy 60 Gy 57 Gy 666 5 5 S 666 <u>555</u> 666 S 33 57 Gy vs 74 Gy HR 1.20 (90% Cl 0.99-1.46), log-rank p=0.11 50 (24) 5 7 7 90 30 0 0 12 18 24 36 60

> Temerty Medicine Dearnale

Radiation Oncology

UNIVERSITY OF TORONTO

Dearnaley et al., Lancet Oncology, 2016

months

months

months

months

months

Clinical and Experimental Radiobiology Course 2025

months

months

Ultra-Hypofractionation in Prostate Cancer

Lancet 2019: 394: 385-95

Radiation Oncology

Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial

Anders Widmark, Adalsteinn Gunnlaugsson, Lars Beckman, Camilla Thellenberg-Karlsson, Morten Hoyer, Magnus Lagerlund, Jon Kindblom, Claes Ginman, Bengt Johansson, Kirsten Björnlinger, Mihajl Seke, Måns Agrup, Per Fransson, Björn Tavelin, David Norman, Björn Zackrisson, Harald Anderson, Elisabeth Kjellén, Lars Franzén, Per Nilsson

Conventional 78 Gy (39 x 2 Gy) in 8 w vs. 42.7 Gy (7 x 6.1 Gy) in 2.5w

Ultra-Hypofractionated

DISEASE CONTROL 100 Conventional fractionation 100- Ultra-hypofractionation 90-90 bowel toxicity (%) 80. 80. 70-70 survival (%) 60-60 50-50-Grade 2 or worse -ailure-free 40-40 30-30. 20-20 Non-adjusted HR 1.002 (95% CI 0.760-1.320), log-rank p=0.99 10-10 Adjusted HR 1.002 (95% CI 0.758-1.325) 0-Ó 10 Time from start of radiotherapy (years) Time from randomisation (years) lemerty Medicine VERSITY OF TORONTO

BOWEL TOXICITY

Clinical and Experimental Radiobiology Course 2025

Log-rank p=1.00

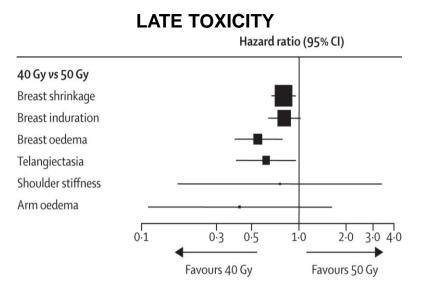
10

Hypofractionation in Breast Cancer

The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials

Joanne S Haviland, J Roger Owen, John A Dewar, Rajiv K Agrawal, Jane Barrett, Peter J Barrett-Lee, H Jane Dobbs, Penelope Hopwood, Pat A Lawton, Brian J Magee, Judith Mills, Sandra Simmons, Mark A Sydenham, Karen Venables, Judith M Bliss*, John R Yarnold*, on behalf of the START Trialists' Group†

Conventional 50 Gy (25 x 2 Gy) in 5 w Hypofractionated/Accelerated 40 Gy (15 x 3.3 Gy) in 3w



Haviland et al., Lancet Oncology, 2013

Vs.

Hypofractionation in Breast Cancer

Conventional 50 Gy (25 x 2 Gy) in 5 w

Hypofractionated/Accelerated 40 Gy (15 x 3.3 Gy) in 3w

Haviland et al., Lancet Oncology, 2013

 \approx

Conclusions

- For tumors with higher α/β than surrounding critical normal tissues (e.g., HNSCC), randomized trials have demonstrated benefit of hyper- and accelerated fractionation for disease control with some increase in acute toxicity but no significant change in late toxicity
- For tumors with lower/similar α/β than surrounding critical normal tissues (e.g., prostate cancer, breast cancer), randomized trials have demonstrated similar disease control and toxicity with hypofractionation

Questions?

Thank you!

Scott Bratman scott.bratman@uhn.ca

