THE HALLMARKS OF CANCER

MARIANNE KORITZINSKY

Princess Margaret Cancer Centre, Toronto, Canada University of Toronto, Toronto, Canada

Marianne.Koritzinsky@uhnresearch.ca @MKoritzinsky

Learning Objectives

- Define "driver" and "passenger" mutations in cancer.
- Estimate the number of "driver" and "passenger" mutations in a tumor.
- Identify processes commonly altered in cancer by genetic alterations.
- Exemplify how genetic alterations in cancer may influence tumor radiation response.

Radiobiology

- The response to radiation is different in normal tissues and cancer:
 - at the cellular level
 - at the tissue level
- These differences are due to the underlying biological properties of different tissues and cancers

Tumor Radiobiology

Fact: We deliver a known physical dose with a high degree of accuracy to similar tumors

Observation: The radiocurability of tumors varies widely

Aim: Understand the biological factors that influence the sensitivity of tumors and normal tissues to radiation

What is Cancer?

Cancer – Important Concepts

- Cancer cells are derived from normal cells in the body
- Cancer cells have acquired a series of changes which distinguishes them from normal cells.
 - These changes are the basis for much of the difference in the ways tumors respond to radiation compared to normal tissues
- There are multiple ways of creating cancer
 - This can explain why even tumors of the same type can differ dramatically in how they response to radiation

Cancer is a genetic disease

- Disease involving changes in the genome
 - point mutations
 - gene amplification
 - deletions, silencing
- 2 classes of cancer genes:
 - Oncogenes (gain of function)
 - Tumor suppressors (loss of function)
- "Driving" genetic alteration:
 - Confers growth advantage
 - Causative of cancer
- "Passenger" genetic alteration:
 - No growth advantage
 - No causative role in cancer

Article

Pan-cancer analysis of whole genomes

82 | Nature | Vol 578 | 6 February 2020

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium https://doi.org/10.1038/s41586-020-1969-6

~2,500 cancer genomes Germline -17 - 43,778,859 somatic SNVs SCNA -73 1.3 410,123 somatic MNVs -Rearrangements -26 2,418,247 somatic indels Non-coding point muts -25 2.6 288,416 somatic SVs Coding point muts -76 19,166 somatic retrotransposition All - 8,185 mt DNA mutations 20 60 2.5 100 0 Patients with Number of drivers ~20K alterations per cancer drivers (%)

4.6

5.0

7.5

Cancer Genome Analysis - TCGA

C Kandoth et al. Nature 502, 333-339 (2013) doi:10.1038/nature12634

AML=Acute Myeloid Leukemia; BRCA=Breast Carcinoma; OV=Ovarian; KIRC=Kidney Renal Clear Cell Carcinoma; UCEC=Uterine Corpus Endometrial Carcinoma; GBM=Glioblastoma; COAD/READ=Colon/Rectal Adenocarcinoma; HNSC=Head and Neck Squamous Cell Carcinoma; BLCA=Bladder Carcinoma; LUAD=Lung Adenocarcinoma; LUSC=Lung Squamous Cell Carcinoma

Summary I

- Cancers have on average ~5 driver genetic alterations
- There are >300 cancer driver genes
 - Oncogenes
 - Tumor suppressors
- Enormous background of passenger alterations (~20K)
- Passenger mutations increase with age and mutagens

The Hallmarks of Cancer

"The vast catalog of cancer cell genotypes is a manifestation of six essential alterations in cell physiology that collectively dictate malignant growth"

> Hanahan & Weinberg, Cell 2000 Hanahan & Weinberg, Cell 2011 Hanahan, Cancer Discovery 2022

1) Sustaining proliferative signaling

Cancer

1) Sustaining proliferative signaling

RTK: Receptor Tyrosine Kinase. TGF: Transforming Growth Factor. Grb2: Growth factor receptor bound. SOS: Son Of Sevenless. Reticular Activating System. Raf: Rapidly Accelerated Fibrosarcoma. MEK: Mitogen activated ERK kinase. MAPK: Mitogen Activated Protein Kinase

2) Evading growth suppressors

2) Evading growth suppressors

3) Resisting death

3) Resisting Apoptosis

4) Enabling Replicative Immortality

4) Enabling Replicative Immortality

Tumor Progression

The Hallmarks of Cancer

Hanahan & Weinberg, Cell 2011

Biological contributors to outcome

Conclusions

- Cancer is caused by a series (~5) changes in the genome
 Additional ~20K passenger genetic alterations
- The changes can be classified into 10 essential hallmarks
- The hallmarks of cancer can be arrived at by many genetic routes – Tumors are very heterogeneous at the genetic level
- These hallmarks (and accompanying genetic alterations) affect treatment and radiation sensitivity in complex ways.
 - Understanding the molecular basis of cancer is important to understand radiation response

Thank you!

Marianne Koritzinsky

Princess Margaret Cancer Centre Toronto, Canada <u>Marianne.Koritzinsky@uhnresearch.ca</u> @MKoritzinsky