Basic Clinical Radiobiology

Quantifying cell kill and cell survival

Michael Joiner

Toronto 2022

Basic Clinical Radiobiology 2022

Plating efficiency (PE) 40/100 = 0.4 16/200 = 0.08 Surviving fraction (SF) = 0.08/0.4 = 0.2

Linear scale of *Surviving fraction*

Cell sensitivity to radiation

DNA is the principal target

Subcellular dose (Gy)

Radiation Source	Nucleus	Cytoplasm	Membrane
X-ray	3.3	3.3	3.3
³ H-Tdr	3.8	0.27	0.01
¹²⁵ I-concanavalin	4.1	24.7	516.7

Warters et al. Curr Top Radiat Res Q 1977;12:389

DNA is the principal target

Microbeam experiments with α particles from polonium show that the cell nucleus is the sensitive site

Munro TR. Radiat Res 1970;42:451

Basic Clinical Radiobiology 2022

Inter-strand cross-link

Modifier	Cell kill	DSB	SSB	Base damage	DPC
1 LET	t	1	Ļ	Ļ	-
1 hypoxia	Ļ	Ļ	Ļ	0	1
1 thiols	Ļ	Ļ	Ļ	0	Ļ
1 heat	↑	1	0	0	0

From Frankenberg-Schwager (1989)

$$P(0 \text{ hits on a target}) = e^{-D/D0}$$

$$P(\ge 1 \text{ hit on a target}) = 1 - e^{-D/D0}$$

$$P(\ge 1 \text{ hit on } n \text{ targets}) = (1 - e^{-D/D0})^n$$

$$P(\text{not all targets hit}) = 1 - (1 - e^{-D/D0})^n$$

$$S = 1 - (1 - e^{-D/D0})^n$$

$$S = 1 - (1 - e^{-D/D0})^n$$

$$S = e^{-\alpha D - \beta D^{2}}$$
$$-\log_{e} S = \alpha D + \beta D^{2}$$

Curtis' LPL model

The concept of repair saturation

The concept of repair saturation Michaelis-Menten kinetics

Lesion interaction vs repair saturation

Table 4.1 Different interpretations of radiobiological phenomena by lesion-interaction and saturable-repair models

Observation	Explanation Lesion interaction	Repair saturation
Curved dose-effect relationship	Interaction of sublesions	Saturation of capacity to repair sublesions
Split-dose recovery	Repair of sublesions (sublethal damage repair)	Recovery of capacity to repair sublesions
RBE increase with LET	More non-repairable lesions at high LET	High-LET lesions are less repairable
Low dose rate is less effective	Repair of sublesions during irradiation	Repair system not saturating

LET, linear energy transfer; RBE, relative biological effectiveneness. Adapted from Goodhead (1985). The Linear Quadratic Cubic model

100 Parameters chosen to **Two-component** n make response similar model may also to LQ at low doses 10 better describe Surviving fraction response to high-dose $\exp(-D/D_1)$ fractions 0.1 0.01 **High LET** $S = e^{-D/D_1} \left(1 - \left(1 - e^{-D(1/D_0 - 1/D_1)} \right)^n \right)$ D_0 4 8 12 16 Radiation dose (Gy)

Low-dose hyperradiosensitivity

Short S, Mayes C, Woodcock M, Johns H, Joiner MC. *Int J Radiat Biol* 1999;75:847–55.

$$S = e^{-\alpha D - \beta D^2}$$

$$\alpha = \alpha_r \left(1 + \left(\alpha_s / \alpha_r - 1 \right) e^{-D/D_c} \right)$$

First reported in 1986 in mouse epidermis and kidney

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0

 $\alpha_{\rm s}$

1

2

3

Surviving fraction

6

5

4

T98G human

GBM cells

 α_r

Int J Radiation Oncol Biol Phys, Vol. 91, No. 1, pp. 82–90, 2015

Biology Contribution

Cytogenetic Low-Dose Hyperradiosensitivity Is **Observed in Human Peripheral Blood** Lymphocytes

Isheeta Seth, PhD,* Michael C. Joiner, PhD, † and James D. Tucker, PhD*

Departments of *Biological Sciences and [†]Radiation Oncology, Wayne State University, Detroit, Michigan

Received Jun 18, 2014, and in revised form Sep 11, 2014. Accepted for publication Sep 13, 2014.

CrossMark

International Journal of Radiation Oncology biology • physics

www.redjournal.org

... Here we provide the first cytogenetic evidence of low-dose hyperradiosensitivity in human cells subjected to y radiation in the G2 phase of the cell cycle...

- We use models to:
 - help make clinical predictions from experimental data
 - predict the change in outcome when we alter treatment
- This is possible because radiation biology is a quantitative discipline