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Plot
Surviving Fraction
on a
Log scale
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Cells show a wide range of
sensitivity

After exposure to radiation,
tumor cells die through
mitotic catastrophe

How to draw these lines? /
How to describe different /

sensitivity?
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Cell sensitivity to radiation
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Cell survival:
lesion production
Versus
lesion repair
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DNA is the principal target

Subcellular dose (Gy)

Radiation

Source Nucleus Cytoplasm Membrane
X-ray 3.3 3.3 3.3
SH-Tdr 3.8 0.27 0.01
125]-concanavalin 4.1 24.7 516.7

Warters et al. Curr Top Radiat Res Q 1977;12:389
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DNA is the principal target

Microbeam experiments with a particles from polonium
show that the cell nucleus is the sensitive site

{ COVERSLIP
' . D

1 Op'/rrl

»
p
>
b,
>
—‘
m
o
<
(@)
r
c
<
m
rCO

Polonium a particles ]
~ Scale of cell and needle
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Single-strand break WPTO&M
- cross-link

Each 1 Gy produces:

Base damage >1000
single-strand breaks ~1000
double-strand breaks ~20
equivalent UV dose 10° dimers

@n/ter-strand cross-link
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Modifier Cell kil DSB SSB  Base DPC
damage

T LET 1 1 l ! —

T hypoxia l l L} 0 1}

T thiols ! ! ! 0 |

T heat 1 1 0 0 0
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P(0 hits on a target) = ePP0

P(=1 hit on a target) =1 - eDP0

P(=1 hit on n targets) = (1 — eP/Po)n

P(not all targets hit) =1 — (1 — eD/PO)n

S=1-(1-e>)
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Viable cells Curtis' LPL model
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Curtis' LPL model
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The concept of repair saturation
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The concept of repair saturation
Michaelis-Menten kinetics
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Lesion interaction vs repair saturation

Table 4.1 Different interpretations of radiobiological phenomena by lesion-interaction and saturable-repair models

Observation Explanation Lesion interaction

Curved dose-effect relationship  Interaction of sublesions

Split-dose recovery Repair of sublesions (sublethal
damage repair)

RBE increase with LET More non-repairable lesions
at high LET

Low dose rate is less effective Repair of sublesions during
irradiation

Repair saturation

Saturation of capacity to repair sublesions
Recovery of capacity to repair sublesions

High-LET lesions are less repairable

Repair system not saturating

LET, linear energy transfer; RBE, relative biological effectiveneness.
Adapted from Goodhead (1985).
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The
Linear
Quadratic
Cubic
model
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T98G human
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GBM cells

hyper-

radiosensitivity

Short S, Mayes C, Woodcock M,
Johns H, Joiner MC.
Int J Radiat Biol 1999;75:847-55.
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First reported in 1986 in 0.2 S bt
mouse epidermis and kidney Dose/Gy
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Int J Radiation Oncol Biol Phys, Vol. 91, No. 1, pp. 82—90, 2015
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...Here we provide the first cytogenetic evidence
of low-dose hyperradiosensitivity in human cells
subjected to y radiation in the G2 phase of the cell cycle...
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* We use models to:

* help make clinical predictions from
experimental data

 predict the change in outcome when we
alter treatment

* This Is possible because radiation biology
IS a quantitative discipline
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