

Targeting Tumor Hypoxia in Patients

Kathy Han, MD, MSc

Department of Radiation Oncology, University of Toronto Radiation Medicine Program, Princess Margaret Cancer Centre Toronto, Canada

Objectives

- Identify ways of measuring hypoxia in human tumors.
- Describe the relationship between hypoxia in human tumors and clinical outcome.
- Understand ways of targeting hypoxia in human tumors and opportunities for future research and clinical development.

What have we learned about hypoxia?

Hypoxia:

- Activates cell survival pathways
- Maintains cancer stem cells
- Alters DNA repair and contributes to genomic instability
- Selects for hypoxia tolerant, clinically aggressive cell populations
- Increases metastatic potential
- Contributes to treatment resistance

Clinical Implications of Hypoxia

- Most solid human tumors contain hypoxia.
- The extent of hypoxia is highly variable within individual tumors, among patients and over time.
- Tumor hypoxia is associated with poor local control after radiotherapy.
- Tumor hypoxia is associated with aggressive clinical behavior and the development of metastases regardless of treatment modality.
- Hypoxia targeted treatments are effective in selected patients.

Measuring Hypoxia in Patients

- Polarographic electrodes (direct oxygen measurement)
- Drugs that bind in hypoxia
 pimonidazole, EF5 (exogenous)
- Endogenous biomarkers
 - HIF1α, HIF2α, CA-IX, GLUT-1,
 VEGF, ...
- Gene signatures
- Imaging
 - MR
 - PET with hypoxia tracer (e.g. F-MISO, FAZA)

Hypoxia is Heterogeneous

Spatial and time-dependent variability confounds the identification of clinically relevant hypoxia

Solutions: Multiple hypoxic markers (gene signatures) Serial, whole-tumor imaging assessment

lakovlev and Hedley, 2007

Tumor Hypoxia (pO2 electrode) and Survival

Prostate Cancer

Fyles et al, JCO 2002

Milosevic et al, Clin Cancer Res 2012

Tumor hypoxia is associated with inferior survival

HIF-1α expression is associated with inferior survival

Jin et al, PLoS One 2015

Meta-analysis: uniform tendency for poor response to RT for hypoxic tumors

Odds ratio (95% CI)

0.17 (0.06-0.52)

0.52 (0.19-1.42)

0.25 (0.16-0.39)

0.27 (0.18-0.39)

10

Hypoxia better

Hypoxia worse

Study	Tumour	Tracer	Events/ No hypoxia	total Hypoxia	Odds ratio and 95% Cl
Loncaster (2002)97	Cervix	DCE MRI	3/25	9/25	
Mayr (2010)98	Cervix	DCE MRI	0/16	17/82	
Andersen (2012) ⁹⁹	Cervix	DCE MRI	1/41	8/40	< B
DCE MRI all			4/82	34/147	
Hermans (1999) ⁸⁷	HNSCC	CTperf	9/21	10/20	
Bisdas (2009) ⁸⁸	HNSCC	CTperf	2/11	4/10	
Truong (2011) ⁸⁹	HNSCC	CTperf	0/6	2/6	
CT perfusion all			11/38	16/36	
Urtasun (1996) ¹⁰²	HNSCC	IAZA	3/10	3/4	
Dehdashti (2003)70	Lung	CuATSM	0/8	6/6	
Lehtiö (2004) ⁵²	HNSCC	FETNIM	4/9	5/8	
Rajendran (2006) ⁵³	HNSCC	FMISO	10/37	18/36	
Rischin (2006) ²⁸	HNSCC	FMISO	1/10	8/13	
Thornwarth (2006)54	HNSCC	FMISO	1/6	4/6	
Li (2006) ¹⁰⁴	Lung	Tc-HL91	8/16	12/16	
Eschmann (2007)55	HNSCC	FMISO	2/4	4/8	•
Dehdashti (2008)71	Cervix	CuATSM	9/22	6/16	
Dietz (2008)72	Rectal	CuATSM	1/9	4/8	
Khamly (2008)56	Sarcoma	FAZA	3/9	7/8	
Spence (2008)57	CNS	FMISO	9/11	11/11	-
Dirix (2009)58	HNSCC	FMISO	2/6	5/6	• • • • • • • • • • • • • • • • • • •
Lee (2009)59	HNSCC	FMISO	0/7	1/11	
Li (2010) ⁶⁰	Lung	FETNIM	8/13	12/13	• • • · · · · · · · · · · · · · · · · ·
Schuetz (2010)47	Cervix	FAZA	0/10	2/5	
Kikuchi (2011) ⁶¹	HNSCC	FMISO	3/10	5/8	
Minagawa (2011) ⁷³	HNSCC	CuATSM	0/5	6/10	
Mortensen (2012)62	HNSCC	FAZA	1/17	7/25	
Yue (2012)63	Oesophagus	FETNIM	1/14	11/14	
Zips (2012) ⁶⁴	HNSCC	FMISO	3/13	5/12	
PET/SPECT all			69/244	142/244	\diamond
All studies			84/364	192/427	

OR 0.27

Especially true for studies using hypoxic PET tracers, but also when hypoxia was indirectly identified using the perfusionbased methods CT and DCE–MRI.

> Horsman et al, Nat Rev Clin Oncol 2012

Targeting Hypoxia in Patients

- 1. RT dose escalation
 - "Dose painting"
- 2. Improved oxygen supply
 - Treat anemia, hyperbaric O₂, carbogen, nicotinamide
- 3. Hypoxic cell radiation sensitization

(mimicks radiosensitizing properties of oxygen)

- Misonidazole, pimonidazole, nimorazole, etanidazole
- 4. Hypoxic cell cytotoxins (activated under hypoxic conditions)
 - Tirapazamine, TH-302
- 5. Metabolic targeting
 - Angiogenesis, O₂ consumption (Metformin), DNA repair

Hypoxic modification: systematic review

Data from 86 randomized trials including 10,108 patients

Overgaard, J Clin Oncol 25:4066-74, 2007

Hypoxic modification: systematic review

Influence on locoregional control as a function of tumor site

Overgaard, J Clin Oncol 25:4066-74, 2007

1. RT Dose Escalation

Dose Painting

Horsman et al, Nat Rev Clin Oncol 2012

Dose Escalation to Hypoxic Tumor Region

- Randomized phase II trial in HN cancer 2009-2017
- Patients assigned treatment arm based on baseline dynamic F-MISO PET

Welz et al, Radiother Oncol 2022

Dose Escalation to Hypoxic Tumor Region

70 Gy to the macroscopic tumor (GTV) + simultaneous integrated boost of 77 Gy to the hypoxic volume

Welz et al, Radiother Oncol 2022

2. Improved Oxygen Supply

Transfusion to Correct Anemia

Apparent benefit of transfusion in cervical cancer possibly confounded by differences in tumor size

Br. J. Cancer (1978) 37, Suppl. III, 302

DEFINITIVE EVIDENCE FOR HYPOXIC CELLS INFLUENCING CURE IN CANCER THERAPY

R. S. BUSH, R. D. T. JENKIN, W. E. C. ALLT, F. A. BEALE, H. BEAN, A. J. DEMBO AND J. F. PRINGLE

From the Ontario Cancer Institute, incorporating The Princess Margaret Hospital, Toronto, Canada

Summary.—From an analysis of 2803 patients with carcinoma of the cervix treated by radiation therapy, a 62% cure rate can be shown. In those patients with Stage IIb and III disease, a haemoglobin level during treatment of below 12~g% was associated with a significantly higher pelvic recurrence rate, and also lower cure rate, than for those with a haemoglobin level 12~g% or more. A prospective study shows that the correction of anaemia is associated with a decreased pelvic recurrence rate and an increased cure rate consistent with tumour hypoxia being greater in anaemic patients than in those with a normal haemoglobin level. It is also consistent with the thesis that hypoxia controls the radiation local control rate in patients with advanced carcinoma of the cervix.

Anemia and Tumor Hypoxia

- Anemia is associated with poor clinical outcomes.
- Severe anemia (<100 g/l) may contribute to hypoxia.

Pre-treatment hemoglobin and hypoxia in cervical cancer

Transfusion to Correct Anemia

Anemia associated with poor outcome in head and neck cancer but no benefit of transfusion

Patients with low pre-treatment hemoglobin in DAHANCA 5 RCT randomized to transfusion or not

Hoff et al, Radiother Oncol 2011

Erythropoetin to Correct Anemia

Worse survival in patients receiving RT+EPO, possibly due to stimulation of tumor EPO receptors

Lambin et al, Cochrane Database of Systematic Reviews, 2009

Carbogen and Nicotinamide

<u>ARCON</u>

- Accelerated RT
 - Tumor repopulation
- Carbogen
 - 95-97% O₂, 2-5% CO₂
 - $-\downarrow$ chronic hypoxia
- Nicotinamide
 - $-\downarrow$ acute hypoxia
- Promising phase I-II studies in 1990's
 - H&N, bladder, glioblastoma

ARCON in Laryngeal Cancer (Phase III RCT)

ARCON improved 5-year regional control (93% vs 86%)

345 patients with T2-T4 laryngeal cancer randomized to receive accelerated RT (AR) \pm carbogen and nicotinamide (ARCON) Janssens et al, JCO 2012

ARCON in Laryngeal Cancer

Benefit of carbogen and nicotinamide only in patients with hypoxic laryngeal tumors

79/345 patients with pimonidazole before treatment

Janssens, 2010

Carbogen and Nicotinamide in Bladder Cancer

Standard RT + carbogen and nicotinamide improved OS & RFS

333 patients with T1-T4a bladder cancer randomized to receive RT ± carbogen and nicotinamide

Hoskin et al, JCO 2010

Carbogen and Nicotinamide in Bladder Cancer: Long Term Outcomes

10 year OS 30% in RT + CON vs 24% in RT alone patients (p = 0.08)

Hoskin et al, IJROBP 2021

Carbogen and Nicotinamide in Bladder Cancer: Long Term Outcomes

Benefit of CON only in patients with tumor necrosis

Hoskin et al, IJROBP 2021

Carbogen and Nicotinamide in Bladder Cancer: Long Term Outcomes

Benefit of CON only in patients with high-hypoxia gene score

Hoskin et al, IJROBP 2021

3. Hypoxic Cell Radiation Sensitization

Hypoxic Cell Radiation Sensitizers

- Bioreductive nitroimidazole drugs
 - Misonidazole, etanidazole, nimorazole
- High electron affinity
- Bind in hypoxic tumor regions and mimic the radio-sensitizing effect of oxygen
- Numerous phase III studies in HN cancer, cervical cancer and other tumors

Modification of tumor hypoxic significantly improves the effect of RT

Hypoxic Modification Better Co

Overall Survival

Control Better

Overgaard, 2007

Targeting HN Cancer Hypoxia During RT

Overgaard et al, Radiother Oncol 2011

Hypoxic Cell Sensitization in HN Cancer

DAHANCA 5 (1980 's):

422 patients randomized to RT + Nimorazole or placebo Nimorazole ↑ locoregional control & disease-specific survival

Two ongoing validation studies (EORTC 1219 and NIMRAD)

Overgaard et al, Radiother Oncol 1998

Patient selection is crucial ...

Benefit of Nimorazole only in patients with hypoxic tumors (15 gene hypoxia signature)

Toustrup et al, Radiother Oncol 2012

Hypoxia is not always important ...

Benefit of Nimorazole only in patients with hypoxic and HPV negative tumors (15 gene hypoxia signature)

Toustrup et al, Radiother Oncol 2012

4. Hypoxic Cell Cytotoxins

Hypoxic Cell Cytotoxins

- Bioreductive cytotoxic drugs that are activated under hypoxic conditions
- DNA damage leading to cell death
- Tirapazamine, TH-302
- Complement the cell killing effects of RT
- Potentiate cisplatin cell killing
- Bystander effect
- Promising results in phase I/II clinical trials

Tirapazamine in HN Cancer (Phase III RCT)

HeadSTART (2000's):

861 patients randomized to RTCT \pm Tirapazamine No benefit of targeting hypoxia

Rischin et al, JCO 2014

Patient selection is crucial ...

- H&N cancer
- RT with or without TPZ
- Benefit of TPZ only in patients with hypoxic tumors identified using PET imaging

Hypoxic, ŢZ Oxic, No TPZ Oxic, TPZ -ocal Failure Free (%) Local Control Hypoxic, No TPZ Hypoxia: Cis-FU v Cis-Tpz, P = .006 Cis-FU: No v ves, exact log-rank P = .015 Years From Random Assignment No. at risk: FU/no FU/yes Tpz/no Tpz/yes

Rischin et al, JCO 2006

The Importance of High Quality Radiotherapy

Peters et al, JCO 2010

The Importance of High Quality Radiotherapy

Technically poor radiation treatment can mask biology

TH-302 in Pancreatic Cancer (Phase II)

TH-302: Hypoxia activated cytotoxin

PFS was longer with Gem + TH302 Compared to Gem (5.6 vs 3.6 mo)

No significant difference in OS

Phase III preliminary results presented at ASCO 2016: OS 8.7 vs 7.6 months, p = 0.059

Borad et al, JCO 2015

5. Metabolic Targeting

Targeting the Tumor Vasculature

Rationale for targeting the tumor vasculature to improve radiation treatment response:

- Hypoxia and angiogenesis are tightly-coupled aspects of the tumor microenvironment.
- Hypoxia and angiogenesis are important determinants of outcome in patients treated with radiotherapy.
- Targeting angiogenesis may improve RT response by:
 - Altering the balance between oxygen supply and consumption leading to reduced hypoxia.
 - Offsetting RT-induced increases in HIF and VEGF as causes of vascular radioresistance.

Vascular 'Normalization'

Probably relevant only in very specific circumstances

Modified from Jain, 2005

Targeting Angiogenesis in Cervical Cancer

PMH Phase I-II study of standard RTCT + sorafenib in locally advanced cancer

Phase I: Sorafenib dose escalation, 3 patients / dose level

Phase II: Sorafenib at MTD

Markers of biologic response (pO₂, IFP, DCE CT, DCE MRI, Biopsies, Blood)

Sorafenib – oral inhibitor of VEGF, PDGF, Raf

Milosevic et al, IJROBP 2016

Sorafenib Increased Tumor Hypoxia

Sorafenib reduced tumor perfusion and increased hypoxia – study closed prematurely

Milosevic et al, IJROBP 2016

Targeting Cellular Oxygen Consumption

Metformin reduces oxygen consumption and hypoxia

Oxygen consumption

Hypoxia (HCT116)

Zannella and Kortizinsky, Clin Cancer Res 2013

Maybe its not that complicated ...

Physical Activity and Survival After Prostate Cancer Diagnosis in the Health Professionals Follow-Up Study

Stacey A. Kenfield, Meir J. Stampfer, Edward Giovannucci, and June M. Chan

J Clin Oncol 29:726-732. © 2011

Effects of exercise training on tumor hypoxia and vascular function in the rodent preclinical orthotopic prostate cancer model

Danielle J. McCullough,¹ Linda M.-D. Nguyen,¹ Dietmar W. Siemann,^{2,3} and Bradley J. Behnke^{1,3}

J Appl Physiol 115: 1846–1854, 2013.

Modulation of Blood Flow, Hypoxia, and Vascular Function in Orthotopic Prostate Tumors During Exercise

Danielle J. McCullough, John N. Stabley, Dietmar W. Siemann, Bradley J. Behnke

JNCI J Natl Cancer Inst (2014) 106(4): dju036 doi:10.1093/jnci/dju036

Physical Exercise and Tumor Hypoxia

Acute mild-moderate exercise reduces tumor hypoxia

- Dunning R-3327 prostate cancer growing in the rat prostate gland
- Treadmill exercise for 5 min

Hypoxia Control

Hypoxia Exercise

McCullough et al, JNCI 2014

Targeting Hypoxia in Patients

- 1. RT dose escalation
 - "Dose painting"
- 2. Improved oxygen supply
 - Treat anemia, hyperbaric O₂, carbogen, nicotinamide
- 3. Hypoxic cell radiation sensitization

(mimicks radiosensitizing properties of oxygen)

- Misonidazole, pimonidazole, nimorazole, etanidazole
- 4. Hypoxic cell cytotoxins (activated under hypoxic conditions)
 - Tirapazamine, TH-302
- 5. Metabolic targeting
 - Angiogenesis, O₂ consumption (Metformin), DNA repair

Objectives

- Identify ways of measuring hypoxia in human tumors.
- Describe the relationship between hypoxia in human tumors and clinical outcome.
- Understand ways of targeting hypoxia in human tumors and opportunities for future research and clinical development.

Summary

- Hypoxia-targeted treatment can improve clinical outcomes in patients receiving radiotherapy.
- Currently available hypoxia-targeted treatments have not permeated routine clinical practice.
- Pre-treatment selection of patients with hypoxic tumors who can benefit from hypoxia-targeted treatments is essential.
- Effective, well tolerated and easily administered hypoxia-targeted treatments are needed.